Supporting Information

One-pot liquid-phase exfoliation from graphite to graphene with

carbon quantum dots

Minghan Xu¹, Wei Zhang¹, Fan Yu³, Yujie Ma¹, Nantao Hu¹, Yanjie Su¹, Dannong He², Qi Liang³, Zhi Yang^{1,3}, * and Yafei Zhang¹*

1 Dr. M. H. Xu, W. Zhang, Dr. Y. J. Ma, Prof. N. T. Hu, Prof. Y. J. Su, Prof. Z. Yang, Prof. Y. F. Zhang
Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
E-mail: zhiyang@sjtu.edu.cn; yfzhang@sjtu.edu.cn
2 Prof. Z. Yang, Prof. D. N. He
National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
3 Dr. F. Yu, Prof. Q. Liang

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Supplementary Figures

Fig. S1 Particle size distribution of CQDs.

Fig. S2 UV-vis spectrum of CQDs.

Fig. S3 XRD pattern of CQDs.

Fig. S4 CQDs solution (a) under visible light and (b) at dark with a green laser bean irradiation of 532 nm; CQDs solution (c) under visible light and (d) at dark under an ultraviolet beam of 365 nm.

Fig. S5 SEM images (a) and (b) of control experiments with only graphite in aqueous medium under sonication condition.

Fig. S6 FT-IR spectra of pristine graphite and exfoliated graphene.

Fig. S7 C1s core level XPS spectrum of exfoliated graphene film.

Fig. S8 Normalized XRD patterns of (a) pristine graphite and (b) exfoliated graphene.

Fig. S9 AFM images of the graphene film (a) 2D topography image and (b) 3D topography image.

Fig. 10 The photo of the exfoliated graphene film.

Supplementary Tables

Parameter	Value	
Image Raw Mean	-404 nm	
Image Mean	-0.0208 nm	
Image Z Range	1625 nm	
Image Surface Area	147 μm²	
Image Projected Surface Area	100 μm²	
Image Surface Area Difference	46.5 %	
Image Rq	246 nm	
Image Ra	193 nm	
Image Rmax	1598 nm	

Table S1 The detailed supporting information of Fig. S9.

Table S2 Comparison of electrical properties of graphene-based materials fabricated by liquid-phase exfoliation.

Exfoliation methods	Sheet resistance (Ω / \Box)	Transmittance values	Ref.
Rose bengal	30270, 7800, 1600	87 %, 43 %, 20 % at 550 nm	2
Chlorosulphonic acid	1000	80 % at 550 nm	3
SDBS	22500	62 % at 632 nm, annealing@250 $^{\circ}\mathrm{C}$ in Ar/N_2 for 2h	4
NMP	7100	61 % at 632 nm	5
Our method/CQDs	400 ~ 500	193 nm surface roughness	/

Note: SDBS: sodium dodecyl benzene sulfonate; NMP: N-Methylpyrolidone

Supplementary References

- 1 S. N. Qu, X. Y. Wang, Q. P. Lu, X. Y. Liu, and L. J. Wang, Angew. Chem. Int. Ed., 2012, 51, 12215.
- 2 G. S. Bang, H.-M. So, M. J. Lee, and C. W. Ahn, J. Mater. Chem., 2012, 22, 4806.
- 3 N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A.
- N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, *Nat. Nanotechnol.*, 2010, **5**, 406.
- 4 M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang, I.
- T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc., 2009, 131, 3611.
- 5 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K.
- Gun'Ko, J. J. Boand, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C.
- Ferrari, and J. N. Coleman, Nat. Nanotechnol, 2008, 3, 563.