Supporting information for

Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy

Sangku Kwon^{†,‡}, Seon Joo Lee^{†,§}, Sun Mi Kim^{†,‡}, Youngkeun Lee^{†,‡}, , Hyunjoon Song^{†,§}, and Jeong Young Park^{*,†,‡}

[†]Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Korea

[‡]Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

[§]Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

*To whom correspondence should be addressed. E-mail: jeongypark@kaist.ac.kr

Figure S1 (a) SEM and (b) AFM topography images of nanodumbells on Au islands.

Figure S2 Multiple measurements of Schottky barrier heights and ideality factors measured on six Pt-CdSe-Pt nanodumbbells that give rise to 0.40 ± 0.02 eV and 9.9 ± 1.2 , respectively.

Estimation of the contact area

To estimate contact area between AFM tip and sample, we used Derjaguin-Muller-Toporov (DMT) continuum mechanical model. The contact area, A, is given by

$$A = \pi \left\{ \frac{R}{K} \left(L + 2\pi R \gamma \right) \right\}^{2/3}$$

Where K is the reduced Young's modulus

$$\frac{1}{K} = \frac{3}{4} \left(\frac{1 - v_s^2}{E_s} + \frac{1 - v_t^2}{E_t} \right)$$

 E_t and E_s are Young's moduli and v_t and v_s are the Poisson ratios of the tip and sample, respectively. ($E_{TiN} = 600$ GPa, $v_{tiN} = 0.25$, $E_{CdSe} = 8$ GPa, $v_{CdSe} = 0.3$) R is the tip radius (~ 35 nm) and L is applied load (~ 0 nN). $2\pi R\gamma$ is adhesion force (15.2 ± 1.2 nN) between tip and sample related to the work of adhesion, γ .