Electronic Supplementary Information

Synthesis of mesoporous carbon nanoparticles with large and

tunable pore sizes

Chao Liu, Meihua Yu, Yang Li, Jiansheng Li*, Jing Wang, Chengzhong Yu*, Lianjun Wang*

[*] C. Liu, Y. Li, Prof. J.S. Li, J. Wang, Prof. L.J. Wang

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse

School of Environmental and Biological Engineering

Nanjing University of Science and Technology

Nanjing 210094, P.R .China

E-mail: lijsh@mail.njust.edu.cn; wanglj@mail.njust.edu.cn

Dr. M.H.Yu, Prof. C.Z. Yu

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland

Brisbane, QLD 4072, Australia

E-mail: c.yu@uq.edu.au

Figure S1. (a) ¹H NMR spectra, (b) GPC traces of PEO_{125} -*b*-PS₁₇₈.

Figure S2. SEM images (a, b) and TEM images (c, d) of PR/PEO-*b*-PS composite nanoparticles.

Figure S3. (a, b) SEM images of PR polymers , (c,d) TEM images of the corresponding carbon nanoparticles (CNs).

Figure S4. nitrogen adsorption-desorption isotherm of CSs

Figure S5. TGA curve of PR/PEO-*b*-PS composite nanoparticles. The pyrolysis process was conducted in N_2 with a heating rate 5 °C/min.

Figure S6. FT-IR spectra of as-made (a) PR/PEO-*b*-PS composite nanoparticles, (b) corresponding MCNs-1.

Figure S7. XPS survey spectrum of (a) MCNs, (c) OMC; High-resolution XPS spectra of C1s of (b) MCNs, (d) OMC.

Figure S8. TEM images of MCNs obtained from synthesis condition of (a) 20 °C, (b) 40 °C, (c) 5 mL ethanol, (d) 15 mL ethanol.

Figure S9. Nitrogen adsorption-desorption isotherm and NLDFT pore diameter distribution curve from adsorption branch of (a, c) MCN-0, (b, d) MCN-2.

Sample	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore size (nm)
MCNs-0	686	0.66	13
MCNs-2	656	0.69	32

 Table 1. Textural parameters of the samples

Figure S10. TEM images and DLS profiles of (a, d) PEO_{125} -*b*-PS₁₂₀ micelle, (b, e) PEO_{125} -*b*-PS₁₇₈ micelle, (d, f) PEO_{125} -*b*-PS₂₅₀ micelle; (g) Photograph of PEO-*b*-PS micelles, (a) PEO_{125} -*b*-PS₁₂₀, (b) PEO_{125} -*b*-PS₁₇₈, (c) PEO_{125} -*b*-PS₂₅₀.

Figure S11. Pore size- micelle size curve of the three kinds of MCNs and corresponding micelles, (a) MCNs-0, (b) MCNs-1, MCNs-2.

Figure S12. Confocal microscopy images of KHOS cells only without any treatment (first row), with the treatment of free Cy3-Oligo DNA (100nM) (second row), the complex of MSNs-1 (80 ug/ml) and Cy3-Oligo DNA (100nM) (third row). The cytoskeleton and nuclei in cells were stained by Alexa Fluor® 488 phalloidin (green) and DAPI (blue), respectively.

Figure S13. Cell viability of KHOS and HCT-116 cells after treated with MCNs-1 at different concentrations.