Supporting Information for:

Mn (II) mediated degradation of artemisinin based on Fe₃O₄@MnSiO₃-FA nanospheres for cancer therapy *in vivo*

Jian Chen,^{#a} Weijie Zhang,^{#b} Min Zhang,^b Zhen Guo,^{*c} Haibao Wang,^{*d} Mengni He,^a Pengping Xu,^a Jiajia Zhou,^c Zhenbang Liu,^c Qianwang Chen^{*a}

a. Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China. E-mail: cqw@ustc.edu.cn; Fax & Fax: +86-551-63603005;

b. Hefei National Laboratory for Physical Sciences at Microscale and School of Life

Sciences, University of Science and Technology of China, Hefei, 230027, China;

c. Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of

Life Sciences, University of Science and Technology of China, Hefei, 230027, China.

E-mail: zhenguo@ustc.edu.cn;

d. Radiology Department of the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. E-mail: whblqh@mail.ustc.edu.cn.

These two authors contributed equally

* Corresponding author

Supporting Information Figures:

Figure S1. Iron mediated degradation mechanism for artemisinin. Products 1, 3, 4, and 6 are minor products of unknown structure observed by LCMS. Product 7 is an acid-mediated degradation product formed by reaction with either H^+ , Fe^{3+} , or Fe^{2+} .

Figure S2. (a) Alkylation of iron(II)-heme or iron(II)/heme dimethylester by artemisinin, leading after demetallation to the covalent adducts 7a-d and 8a-d, respectively; (b) Mechanism of alkylation of the heme model Mn^{II}TPP by artemisinin.

Figure S3. Schematic illustration of the synthesis of ART-loaded Fe_3O_4 @MnSiO₃-FA nanospheres.

Figure S4. X-ray diffraction pattern for the products of Fe_3O_4 , Fe_3O_4 @SiO₂ and Fe_3O_4 @MnSiO₃.

Figure S5. EDX spectrum of Fe₃O₄@MnSiO₃ nanospheres.

Figure S6. FT-IR spectrum of Fe₃O₄@MnSiO₃ nanospheres.

Figure S7. (a) N_2 adsorption and desorption isotherm and (b) BJH pore distribution of Fe₃O₄@MnSiO₃ nanospheres.

Figure S8. FT-IR spectra of FA, Fe₃O₄@MnSiO₃ nanopheres and Fe₃O₄@MnSiO₃-FA nanospheres.

Figure S9. UV-vis spectra of FA, Fe_3O_4 @MSiO₃ nanopheres and Fe_3O_4 @MnSiO₃-FA nanospheres.

Figure S10. FT-IR spectra of standard ART, $Fe_3O_4@MnSiO_3$ -FA nanopheres and ART-loaded $Fe_3O_4@MnSiO_3$ -FA nanospheres.

Figure S11. TEM images of Fe_3O_4 @MnSiO₃ nanospheres kept in PBS with pH 5.5 for 24 h.

Figure S12. In vitro stability of ART-loaded Fe₃O₄@MnSiO₃-FA nanospheres. The size of the nanospheres in distilled water was measured by a commercial laser light scattering (LLS) spectrometer (ALV/DLS/SLS-5022 F).

Figure S13. Parallel test results of flow cytometric detection in A549 cells treated with (a) saline, (b) ART, (c) Fe₃O₄@MnSiO₃-FA nanospheres and (d) ART-loaded Fe₃O₄@MnSiO₃-FA nanospheres at concentrations of ART 16.5 μ g/mL or Fe₃O₄@MnSiO₃-FA nanospheres 75 μ g/mL. n.s., not significant; *, p<0.05; **, p<0.001.

Supporting Information Table:

	рН 7.4	рН 6.8	рН 5.5
Released Fe ²⁺ (%)	0.033	0.084	0.12
Released Mn ²⁺ (%)	0.92	3.53	12.59

Table S1. Fe^{2+} or Mn^{2+} release from Fe_3O_4 @MnSiO₃ nanospheres in PBS at different pHs (7.4, 6.8, 5.5).