Supplementary information

The specific substrates corresponding to Fig. 1 consist in a transparent dielectric layer (refractive index n) deposited (or grown) on a Si substrate. The layer thickness t is adapted to tune one of the anti-reflectance conditions to the LSPR of the metallic particles:

$$t = (m + \frac{1}{2})\frac{\lambda}{2n}$$
 with $\lambda = \lambda_{LSPR}$ (1)

where λ is the electromagnetic wavelength in vacuum and m the destructive interference order. Three embedding media (air, SiO₂ or TiO₂) have been considered in Fig. 1a. The extinction efficiency C_{ext} of an Ag metallic sphere (D = 3 nm) embedded in a transparent medium (dielectric function ε_m) is essentially due to absorption and one gets¹:

$$C_{ext} \approx C_{abs} = 12\pi \frac{D}{\lambda} \varepsilon_m^{3/2} \frac{\varepsilon''(\lambda)}{\left[\varepsilon'(\lambda) + 2\varepsilon_m\right]^2 + \left[\varepsilon''(\lambda)\right]^2}$$
(2)

where $\varepsilon = \varepsilon' + i\varepsilon''$ is the complex dielectric function of the metal. The relaxation of the plasmon (wavelength λ_p in the bulk) due to finite size effect has been accounted for by adding a supplementary term at the imaginary part ε'' of the bulk dielectric function²:

$$\varepsilon_s'' = \frac{\lambda^3}{2\pi c \lambda_p^2} \Gamma_s \quad \text{with} \quad \Gamma_s = \frac{1}{\tau_s} = 2g_s \frac{v_F}{D}$$
(3)

In the expression of the damping parameter Γ_s , v_F is the Fermi velocity and g_s a coefficient that allows to define an effective mean free path for electron collisions. In Fig. 1a, which is here only schematic, we have adopted the most common value, $g_s = 1$.

The expected reflectance spectra of the corresponding bilayers are reported in Fig. 1b. In each case, the dielectric thickness has been chosen in order to realize a $3\lambda/4$ antireflective system (m = 1 in Eq. (1)) at the SPPR wavelength λ_{LSPR} of the embedded Ag-NCs. The modelling of the reflectance has been performed by considering the propagation of incident and successive reflected electromagnetic waves in the stratified medium using a matrix formulation^{3,4}. One observes in Fig. 1b that the higher the refractive index of the embedding matrix, the higher the quality factor defined as $Q = \lambda_{LSPR}/\Delta\lambda$ (where $\Delta\lambda$ is the FWHM). Moreover, this enhancement of the dielectric confinement is accompanied by a red shift of the LSPR, following the sequence : air (n = 1), SiO₂ (1.46) and TiO₂ (2.57).

Bibliography

- [1] S. A. Maier, *Plasmonics: Fundamentals and Applications*, Springer, 2007.
- [2] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, 1983.
- [3] R. Carles, C. Farcau, C. Bonafos, G. Benassayag, M. Bayle, P. Benzo, J. Groenen and A. Zwick, ACS Nano, 2011, 5, 8774–82.
- [4] M. Bayle, P. Benzo, N. Combe, C. Gatel, C. Bonafos, G. Benassayag and R. Carles, *Physical Review B*, 2014, 89, 195402.