Supporting Information

Improved Electrochemical Performance of Nitrogen Doped TiO₂-B Nanowires as Anode Material for Li-ion Batteries

Yongquan Zhang,^a Qiang Fu,^a Qiaoling Xu,^a Xiao Yan,^b Rongyu Zhang,^a Zhendong Guo,^a Fei Du,^a Yingjin Wei,^{*a} Dong Zhang,^a and Gang Chen^{a, c}

^a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.

^b CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China. ^c State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.

Corresponding author: yjwei@jlu.edu.cn (Y. J. Wei)

Tel & Fax: 86-431-85155126

Figure S1: XRD patterns of the N-doped TiO₂-B precursors. As the first step for materials preparation, TiN nano particles were heat treated at 400 °C in air to obtain the precursors. X-ray diffraction shows that the precursor is a mixture of anatase, rutile and TiN due to incomplete reaction of TiN with oxygen. The amount of N in the precursors could be adjusted by changing the heat treatment time, i.e. 0, 10, 20 and 30 minute for Sample-A, B, C and D, respectively. In order to prepare pure TiO₂-B nanowires (Sample-E), the heat treatment temperature should be increased to 500 °C and the heating time should be elongated to 10 h.

Figure S2: N 1s XPS of the N-doped TiO₂-B samples. The N 1s peaks at 399.8, 396.6 and 395.6 eV are due to the interstitial-N, TiN impurity and substituted-N, respectively. The proportions of different N species in the samples are calculated from the XPS data as displayed in Table S1. It is seen that the maximum proportion of interstitial-N in TiO₂-B is ~ 0.55 at.%. Above this value, the N dopants will substitute the oxygen atoms. In addition, the maximum substituted-N in TiO₂-B is evaluated to be ~ 1.3 at.%; otherwise, TiN impurity will be formed in the material.

Table S1. Proportions of different N species of the N-doped TiO₂-B samples.

	Interstitial-N (at.%)	TiN impurity (at.%)	Substituted-N (at.%)
Sample-A	0.56	2.37	1.33
Sample-B	0.57	0	0.72
Sample-C	0.51	0	0.50
Sample-D	0.52	0	0
Sample-E	0	0	0

Figure S3: Normalized discharge capacities of the $P-TiO_2$, $I-TiO_2$ and $I/S-TiO_2$ samples at different current rates.

Figure S4: Cycling performance of the N-doped TiO₂-B samples at the 20 C rate.

Figure S5: Rate dependent cycling performance of the N-doped TiO₂-B samples.

Figure S6: Linear fitting of the Z' vs. $\omega^{-1/2}$ plots of the P-TiO₂, I-TiO₂ and I/S-TiO₂ samples at 3.0 V (a) and 1.0 V (b) of the first discharge.

Figure S7: GITT curves of the P-TiO₂, I-TiO₂ and I/S-TiO₂ samples at x = 0.49.

Figure S8: *E vs t*^{1/2} plots of the P-TiO₂, I-TiO₂ and I/S-TiO₂ samples at x = 0.49.