Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information

ILs-derived N, S Co-doped Ordered Mesoporous Carbon for High-Performance Oxygen Reduction

Wenxiu Yang, Xiaoyu Yue, Xiangjian Liu, Junfeng Zhai, and Jianbo Jia * State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China University of Chinese Academy of Sciences, Beijing 100049, China Corresponding Authors: <u>jbjia@ciac.ac.cn</u> (J. Jia)

Fig. S1 TEM images of the a) commercial OMC, b) IOMC-700, c) IOMC-800, and d) IOMC-900.

Fig. S2 BET images of the resultant composites.

Fig. S3 Linear sweep voltammetric (LSV) curves of IOMC-850 and N-IOMC-850. Scan rate is 5 mV/s, rotation rate is 1600 rpm.

Fig. S4 TEM image of the Fe-IOMC.

Table S1 The I_D/I_G values of the OMC,IOMC-850, and N-IOMC-850 by Ramanspectroscopy.

Materials	OMC	IOMC-850	N-IOMC-850
I _D /I _G	0.94	1.05	0.98

Table S2 The BET surface area values of the IOMC-700, IOMC-800, IOMC-850,IOMC-900, and OMC by nitrogen sorption technique.

Materials	IOMC-700	IOMC-800	IOMC-850	IOMC-900	OMC
BET surface area/m ² g ⁻¹	600.8	599.0	666.1	594.0	749.1

Catalyst	E _{onset} /V	$E_{1/2}/V$	Reference electrode	References
S-G	-0.15	-0.37	vs. SCE	1
N,S-G	-0.06	-	vs. Ag/AgCl	2
S,N-CNTs	Similar to Pt/C	-	vs. SCE	3
N, O, S-C	~0.96	~0.74	vs. RHE	4
S, N-C	0.035	-	vs. Ag/AgCl	5
S ₂ N ₂ -GN1000	-0.052	-	vs. Ag/AgCl	6
N,S-RGO/GQDs	-0.10	-	vs. Ag/AgCl	7
CNT/HDC-1000	0.92	0.82	vs. RHE	8
C-PANI/NSA	0.84	0.67	vs. RHE	9
S-G-800	-0.15	-	vs. SCE	10
N-OMMC-G	-0.05	-	vs. Ag/AgCl	11
IOMC-850	0.009	-0.155	vs. Ag/AgCl	this work

Table S3 Comparison of ORR performance in basic media for IOMC-850 with other metal-free heteroatom-doped carbon electrocatalysts (a catalysts directly grown on current collectors).

Notes: S_2N_2 -GN: N and S dual-doped graphene that prepared with bithiophene-dipyrrolemethane ; RGO: reduced graphene oxide; GQDs: Graphene quantum dots; HDC: Heteroatom-doped carbon; PANI: polyaniline; NSA: b-naphthalene sulfonic acid; OMMC: ordered macro-mesoporous carbon; G: graphene

References

- Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai and S. Wang, *Angew. Chem., Int. Ed.*, 2015, 54, 1888.
- J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem., Int. Ed., 2012, 51, 11496.
- Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang and D. Su, J. Mater. Chem. A, 2013, 1, 14853.
- 4. Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu and T. Asefa, *J. Am. Chem. Soc.*, **2014**, 136, 13554.
- 5. Y. Li, H. Zhang, Y. Wang, P. Liu, H. Yang, X. Yao, D. Wang, Z. Tang and H. Zhao, *Energ. Environ. Sci.*, **2014**, *7*, 3720.
- 6. J.-M. You, M. S. Ahmed, H. S. Han, J. E. Choe, Z. Ustundag and S. Jeon, J. *Power Sources*, 2015, 275, 73.
- 7. Z. Luo, D. Yang, G. Qi, J. Shang, H. Yang, Y. Wang, L. Yuwen, T. Yu, W.

Huang and L. Wang, J. Mater. Chem. A, 2014, 2, 20605.

- Y. J. Sa, C. Park, H. Y. Jeong, S.-H. Park, Z. Lee, K. T. Kim, G.-G. Park and S. H. Joo, *Angew. Chem., Int. Ed.*, 2014, 53, 4102.
- 9. R. Zheng, Z. Mo, S. Liao, H. Song, Z. Fu and P. Huang, *Carbon*, **2014**, 69, 132.
- 10. J. Wang, R. Ma, Z. Zhou, G. Liu and Q. Liu, Sci. Rep., 2015, 5, 9304.
- 11. J. Liang, X. Du, C. Gibson, X. W. Du and S. Z. Qiao, *Adv. Mater.*, **2013**, 25, 6226.