Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting information

Chiral Nematic Porous Germania and Germanium/Carbon Films

Jing Xu^a, Thanh-Dinh Nguyen^b, Kai Xie^a, Wadood Y. Hamad^c and Mark J. MacLachlan*^b

^{a.} Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology (NUDT), Changsha, Hunan 410073, P. R. China

^{b.} Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 121, Canada

^{c.} FPInnovations, 2665 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada

* Corresponding Author: mmaclach@chem.ubc.ca

Figure S1. TEM images of the aqueous solution of CNCs (0.002 wt%).

Figure S2. CD spectra of a GeO_2/CNC composite film obtained by rotating the sample from 0° to 90°. No significant change is observed, indicating that the positive signal is not dominated by linear birefringence.

Figure S3. SEM images viewed perpendicular to fracture cross-sections of the GeO_2/CNC composite films prepared using the water/DMF ratio of 1:1 (a) and 1:2 (b).

Figure S4. FTIR spectra of chiral nematic GeO_2/CNC composite film GeO_2/CNC (a) and the corresponding chiral nematic GeO_2 films **Ge-A** (b), mesoporous Ge/C composite film **Ge-H** (c) and GeO_2/C composite film **Ge-N** (d).

Figure S5. TGA curve of (a) the chiral nematic GeO_2/CNC composite film and the corresponding chiral nematic mesoporous (b) Ge/C composite film **Ge-H** and (c) GeO_2/C composite film **Ge-N**.

Figure S6. Expanded SEM images of chiral nematic GeO₂ films (**Ge-A**) obtained by calcination of GeO₂/CNC composite films under flowing air. (a,b) The top view with low magnification confirms the smooth surface of GeO₂ film; (c,d) Under higher magnification, the images viewed along the edges showing the layered twisting structures.

Figure S7. N_2 absorption and desorption isotherms of chiral nematic GeO₂ films (Ge-A) obtained from calcination of the GeO₂/CNC composite film under air. This material has very low surface area.

Figure S8. Raman spectra of chiral nematic mesoporous Ge/C film (**Ge-H**, blue line) and GeO₂/C composite film (**Ge-N**, red line).

Figure S9. Expanded TEM images of GeO₂/C films (Ge-N).