Supplementary Information

Engineering Defect State and Reducibility of Ceria Based Nanoparticles for Improved Anti-oxidation Performance

Yan-Jie Wang,^{a,b} Hao Dong,^a Guang-Ming Lyu,^a Huai-Yuan Zhang,^a Jun Ke,^a Li-Qun Kang,^a Jia-Li Teng,^c Ling-Dong Sun,^{a,*} Rui Si,^d Jing Zhang,^e Yan-Jun Liu,^{c,*} Ya-Wen Zhang,^a Yun-Hui Huang^{b,*} and Chun-Hua Yan^{a,*}

^a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China. Fax: +86-10-62754179; Tel: +86-10-62754179; E-mail: sun@pku.edu.cn, yan@pku.edu.cn.

^b Key Laboratory for Advanced Battery Materials and System (MOE), School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China. Fax: +86-27-87558241; Tel: +86-27-87558241; E-mail: huangyh@mail.hust.edu.cn.

^c Department of Endocrinology, 306 Hospital of People's Liberation Army, Beijing 100101, China; Fax: +86-10-64860685; Tel: +86-10-66356374; E-mail: damaoermaosanmao@aliyun.com.

^d Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.

^e Beijing Synchrotron Radiation Facility, Institute of high energy physics, Chinese Academy of Sciences, Beijing 100049, China.

Sample	^a Size (nm)	^b Lattice parameter	Hydrodynamic Diameter	°Gd ³⁺ (XPS)	Gd ³⁺ (ICP)	I_{D1}/I_{F2g}
		(pm)	(nm)			
CeO ₂	6.64	541	98.1			0
CeO ₂ :10%Gd	6.44	545	108.4	9.9%	10.6%	0.023
CeO ₂ :20%Gd	6.44	546	106.8	20.5%	20.0%	0.075

Table S1. Characterization of CeO₂ and CeO₂:Gd NPs.

^a Particle size calculated by Scherrer equation.

^b2θ correction and cell dimension calculation were performed using LAPOD code with least squares refinement (Ref. S2 and S3).

^c Background excluding, curve fitting, and peak integration were performed using CasaXPS v2.3.15 software. Amount of Gd and Ce were obtained from the peak area (A) of Ce 3d, Gd 4d spectra. The doping ratio of Gd atom at surface levels was calculated through the following equation:

$$Gd\% = \frac{\frac{A(Gd)}{S(Gd)}}{\frac{A(Gd)}{S(Gd)} + \frac{A(Ce)}{S(Ce)}}$$

In which, S is the relative sensitivity factor. Uncertainly for the fitting and measurements was estimated to be about $\pm 30\%$.

Table S2. BET surface area and catalytic performance of CeO₂ and CeO₂:Gd NPs.

Sample	BET surface	Conversion	Specific read	TOF at	
	area / $m^2 \cdot g^{-1}$	concentration of H_2O_2 at 30min / mmol·L ⁻¹	per unit weight of catalyst / mol·h ⁻¹ ·g-1	per unit surface area / $mol \cdot h^{-1} \cdot m^{-2}$	37 °C / s ⁻¹
CeO ₂	92	0.47	9.55	0.10	0.60
CeO ₂ :10%Gd	117	0.61	12.17	0.11	0.66
CeO ₂ :20%Gd	107	0.71	14.24	0.16	0.95

Table S3. $\Delta\lambda$ at optical density of 0.3 of CeO₂ and CeO₂:Gd NPs.

Sample.	CeO_2	CeO ₂ :10%Gd	CeO ₂ :10%Gd
$\Delta\lambda$ at optical density of 0.3	26	32	36

Table S4. Catalytic performance of CeO₂ and CeO₂:Gd NPs for third cycle.

Sample for third cycle	CeO_2	CeO ₂ :10%Gd	CeO ₂ :20%Gd
TOF at $37^{\circ}C/s-1$	0.40	0.46	0.57

Table S5. The typical EXAFS results of CeO₂:Gd NPs during the anti-oxidation process.

Sample.	Shell	CN	<i>R</i> / Å	σ^2 / Å 2
CeO ₂ :10Gd	Ce-O	5.7±0.3	2.315±0.005	0.009 ± 0.001
CeO ₂ :20Gd	Ce-O	5.5±0.3	2.303 ± 0.005	0.010 ± 0.001
CeO ₂ :20Gd-10min	Ce-O	6.4±0.2	2.312±0.001	0.012 ± 0.001
CeO ₂ :20Gd-3h	Ce-O	6.0±0.3	2.303±0.006	0.011 ± 0.001
CeO ₂ :20Gd-9h	Ce-O	6.0±0.2	2.302±0.005	0.011 ± 0.001

Fig. S1. Size distribution of CeO₂-based NPs from TEM image. (a) CeO₂ NPs. (b) CeO₂:10% Gd NPs. (c) CeO₂:20% Gd NPs.

Fig. S2. HRTEM images of CeO_2 -based NPs. (a) CeO_2 NPs. (b) CeO_2 :10%Gd NPs. (c) CeO_2 :20%Gd NPs.

Fig. S3. ^aEELS spectra of CeO₂-based NPs. For comparison, CePO₄ and bulk CeO₂ were also detected by EELS. The $M_{4,5}$ edges reflect transitions of 3d core electrons to unoccupied states of p-and f-like symmetry. The spectra of CeO₂ and CeO₂:Gd are close to that of bulk CeO₂. The Ce³⁺/Ce⁴⁺ ratios can be determined by comparing M_4/M_5 intensity ratio. The spectrum of bulk CeO₂ gives a M_4/M_5 intensity ratio of 0.93, which is the characteristic of Ce³⁺. Meanwhile, as-prepared CeO₂, gives a ratio of 1.0, indicating that a small number of Ce³⁺ (about 15%) exists. Similarly, the fraction of Ce³⁺ in CeO₂:10%Gd and CeO₂:20%Gd NPs is respectively 40%, 35%. ^a The EELS acquisition time is about 10 s

Fig. S4. XPS spectra of as-prepared CeO₂-based NPs. (a) Full XPS spectra of CeO₂ and CeO₂:Gd NPs. (b) Ce 3d spectra of CeO₂ and CeO₂:Gd NPs. (c) Ce 3d XPS spectrum of Ce(III). (d) Ce 3d XPS spectrum of Ce(IV). Standard Ce(III) and Ce(IV) were obtained from CeO₂ and Ce₂O₃. They were used to fit Ce 3d spectra to obtain Ce(III) proportion. (e) Ce 3d spectra of CeO₂ NPs fitted as the linear combination of Ce(III) and Ce(IV) 3d spectra with the reported method (Ref. S1). (f) Ce 3d spectra of CeO₂:20% Gd nanoparticles fitted as the linear combination of Ce(III) and Ce(IV).

There is no obvious difference in the Ce 3d XPS spectrum after doping Gd^{3+} into CeO₂ NPs. From the fitting results, Ce 3d XPS spectra of three CeO₂ based NPs are close to Ce⁴⁺, indicating that the main valance of surface Ce in the sample is +4, probably due to the synthesis of CeO₂ NPs in oxygen-enriched environment.

Fig. S5. (a) TG curves of CeO₂ and CeO₂:Gd NPs. (b) FT-IR spectra of CeO₂ and CeO₂:Gd NPs. The weight loss of CeO₂, CeO₂:10%Gd and CeO₂:20%Gd and is 3.7%, 6.3% and 5.3%, respectively. The weight loss is proposed to be due to the surface bound-OH and residual NO₃⁻. The peak nearby 3430 cm⁻¹ shown in FT-IR spectra of CeO₂ based NPs is proposed to be attributed to the stretching vibration of the surface bound-OH. In addition, the surface bound-OH could increase after doping Gd³⁺ into the CeO₂ based NPs from the FT-IR spectra.

Fig. S6. The Time-dependent XANES spectra of CeO_2 NPs during the reaction with H_2O_2 . Every XAFS spectrum was collected for 10 times to improve the data accuracy. There is no obvious difference in the XANES spectra of CeO_2 NPs following the reaction.

Fig. S7. Raman spectra of prepared CeO_2 NPs during the reaction with H_2O_2 for the second and third cycle.

Fig. S8. EPR spectra of the reaction system including 100 μ g/mL CeO₂ and 80 μ g/mL H₂O₂. The black: at the beginning of the reaction, the red: reaction for 10min.

Fig. S9. XRD spectra of CeO₂:Gd NPs.

Fig. S10. TEM images of CeO_2 :Gd NPs. (a) CeO_2 :10%Gd NPs. (b) CeO_2 :20%Gd NPs.

Fig. S11. Hydrodynamic diameter of CeO₂-based NPs.

Fig. S12. UV-vis absorption spectra of CeO₂ and CeO₂:Gd NPs before and after the addition of excess H_2O_2 (H_2O_2/Ce ratio was 57).

Fig. S13. H₂-TPR analysis over CeO₂ and CeO₂:Gd NPs.

Fig. S14. *In vitro* cytotoxicity of CeO₂-based nanoparticles on INS-1 cells for 3 days. (a) $CeO_2 NPs.$ (b) $CeO_2:10\%$ Gd NPs. (c) $CeO_2:20\%$ Gd NPs.

References

- [S1] C. Zhang, M. E. Grass, A. H. McDaniel, S. C. DeCaluwe, F. E. Gabaly, Z. Liu, K. F. McCarty, R. L. Farrow, M. A. Linne, Z. Hussain, G. S. Jackson, H. Bluhm, and B. W. Eichhorn, *Nature Mater.*, 2010, 9, 944-949.
- [S2] J. I. Langford, J. I. J. Appl. Crystallogr., 1971, 4, 259-260.
- [S3] J. I. Langford, Appl. Crystallogr., 1973, 6, 190-196.