SUPPORTING INFORMATION

A generic amplification strategy for electrochemical aptasensors using a nonenzymatic nanoceria tag

Gonca Bulbul, Akhtar Hayat, and Silvana Andreescu*

Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394; *Corresponding author E-mail: eandrees@clarkson.edu

Figure S1. SEM image of nCe; a) bare SPCE; b) GO modified SPCE; c) GO/EDC modified SPCE; d) GO/EDC/aptamer modified SPCE: white spots indicating the presence of aptamer on the electrode surface.

Figure S2. Cyclic voltammograms of H_2O_2 oxidation obtained using 16.5 mg/mL nCe incubated with different OTA concentrations of **1**) 45 μ M **2**)22.5 μ M **3**)11.25 μ M **4**)5.625 μ M **5**) 1.40625 μ M **6**) 0.08 μ M OTA (inset shows the OTA concentration dependency at 0.9 V).

Figure S3. A) Cyclic Voltammograms of 0.2 M H_2O_2 with different amounts of nCe-OTA. **B)** Corresponding bar graph.

Figure S4. Cyclic Voltammograms of 0.2 M H_2O_2 with cerium oxide **a**) 0 **b**) 30 **c**) 120 **d**) 300 **e**) 1200 seconds.

Figure S5. Cyclic Voltammograms of $0.2 \text{ M H}_2\text{O}_2$ in the presence of nCe-OTA with varying concentrations of free OTA of a) 0.001 b) 0.01 c) 0.02 d) 0.1 e) 0.5 f) 0.9 g) 5 h) 10 i) 50 j) 180 nM.

Sr No	Name	DLS particle Size Zeta Potentia	
		distribution (nm)	(mV)
1	nCe particles	18.9±1.5	34.5±3.4
2	nCe particles-	22±1.1	26±1.4
	OTA complex		

Table S1.	Characterization	of nCe	particles and	nCe-OTA	complex
-----------	------------------	--------	---------------	---------	---------

Table S2. Summary of performance characteristics of the designed sensor in comparison with other OTA ELISA based affinity immuno/aptamer assays and nanomaterials integrated aptasensors.

Method	Detection Principle	Detection Limit (ng/mL)	Linear Range (ng/mL)	Refs.
Electrochemical detection	Competitive ELISA assay using monoclonal antibodies in direct and indirect format on screen printed carbon electrode	60	0.05–2.5	[1]
Optical Waveguide Lightmode Spectroscopy	Competitive and indirect immunoassays based on the immobilization of antibodies onto a sensor chip, which is used in a flow- injection analyzer system		0.5 -10	[2]
Electrochemical detection	Two indirect competitive enzyme- linked immunosorbent assay strategies developed by using ALP and HRP as enzyme labels	0.3 , 0.7	0.7 - 138	[3]
Electrochemical detection	Free OTA competed with labeled alkaline phosphatase–OTA for the binding to the DNA aptamer immobilized on magnetic beads	0.11	0.11–15	[4]
Colorimetric Detection	Direct competition between free OTA and OTA-HRP conjugate for the immobilized aptamer	1	1-80	[5]
Electrochemical detection	Paramagnetic microparticle beads functionalized with an aptamer specific to OTA, were allowed to compete with a solution of mycotoxin conjugated to HRP (OTA–HRP) and free OTA.	0.07±0.01	0.78-8.74	[6]
Electrochemical detection	Automated flow-based electrochemical aptasensor based on magnetic beads as immobilization support for OTA detection. The OTA beads were immobilized on a screen printed carbon electrode surface	0.05		[7]
Electrochemical detection	Thiolated aptamers specific to OTA immobilized by chemisorption to a gold electrode surface; addition of target analyte changed the electron transfer resistance.	0.052	0.043-43	[8]
Electrochemical Detection	Competition between free and nanoceria labeled OTA on an aptamer GO coated screen printed carbon electrode	0.043	0.065 - 78	This work

References

1. Alarcón, S. H.; Palleschi, G.; Compagnone, D.; Pascale, M.; Visconti, A.; Barna-Vetró, I., Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. *Talanta* **2006**, *69* (4), 1031-1037.

2. Adányi, N.; Levkovets, I. A.; Rodriguez-Gil, S.; Ronald, A.; Váradi, M.; Szendrő, I., Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. *Biosensors and Bioelectronics* **2007**, *22* (6), 797-802.

3. Prieto-Simón, B.; Campàs, M.; Marty, J.-L.; Noguer, T., Novel highly-performing immunosensorbased strategy for ochratoxin A detection in wine samples. *Biosensors and Bioelectronics* **2008**, *23* (7), 995-1002.

4. Barthelmebs, L.; Hayat, A.; Limiadi, A. W.; Marty, J.-L.; Noguer, T., Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. *Sensors and Actuators B: Chemical* **2011**, *156* (2), 932-937.

5. Barthelmebs, L.; Jonca, J.; Hayat, A.; Prieto-Simon, B.; Marty, J.-L., Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine. *Food Control* **2011**, *22* (5), 737-743.

6. Bonel, L.; Vidal, J. C.; Duato, P.; Castillo, J. R., An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. *Biosensors and Bioelectronics* **2011**, *26* (7), 3254-3259.

7. Rhouati, A.; Hayat, A.; Hernandez, D. B.; Meraihi, Z.; Munoz, R.; Marty, J.-L., Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. *Sensors and Actuators B: Chemical* **2013**, *176* (0), 1160-1166.

8. Castillo, G.; Lamberti, I.; Mosiello, L.; Hianik, T., Impedimetric DNA Aptasensor for Sensitive Detection of Ochratoxin A in Food. *Electroanalysis* **2012**, *24* (3), 512-520.