Large-area synthesis of monolayer MoS_{2(1-x)}Se_{2x} with a tunable band gap and its enhanced electrochemical catalytic activity

Lei Yang^{1,2}, Qi Fu¹, Wenhui Wang¹, Jian Huang¹, Jianliu Huang³, Zhiyong Fan⁴, Jingyu Zhang⁵,

Bin Xiang^{1,2*}

¹Department of Materials Science & Engineering, CAS key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China

- ²Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- ³Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- ⁴Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- ⁵Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA

*Corresponding authors: <u>binxiang@ustc.edu.cn</u>

Fig. S1 Optical images of monolayer $MoS_{2(1-x)}Se_{2x}$ with different S composition.

Fig. S2 (a) Schematic structure of monolayer MoS₂. The Mo atoms are bonded with six S atoms symmetrically. (b) Schematic illustration of the band structure of 1H MoX₂ (X=S, Se, Te). The non-bonding *d* bands are located within the gap of bonding (σ) and antibonding (σ *) bands. From bottom to top, the non-bonding *d* bands are Mo-d_z², Mo-d_x²-y², xy and Mo-d_{xz}, yz orbitals, respectively. The filled states are shaded with blue. The gap between the Mo-d_z² and Mo-d_x²-y², xy orbitals are corresponding to the band gap of 1H MoX₂.^[S1]

Fig. S3 Schematic illustration of transferring the as-grown monolayer $MoS_{2(1-x)}Se_{2x}$ onto GCE.

References

S1 M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, Nat. Chem., 2013, 5, 263-

275.