Electronic Supplementary Information

Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via Kirkendall effect

Wenli Zhou, *^{ab} Rui Zou, *^a Xianfeng Yang,^c Ningyu Huang,^a Junjian Huang,^a Hongbin Liang,^a and Jing Wang*^a

Figure S1. Refined XRD patterns of products sintering at 1000 °C for 0.5 h (a), 3 h (6) and 6 h (c). The refined percentage of Y_2O_3 and Y_2SiO_5 content is also shown here. Crosses: experimental; red solid line: calculated XRD patterns; blue solid line: difference. Two set of tick marks show the Bragg reflection positions of the phases Y_2O_3 (red) and Y_2SiO_5 (cyan).

Figure S2. EDX spectrum of hollow Y_2SiO_5 nanowalnuts, inset shows the TEM image. The atomic ratios of Y, Si and O is 3:2:5. Cu signal comes from the Cu support substrate.

Figure S3. Refined XRD patterns of products from annealing $Y_2O_3@SiO_2$ (a) and YOHCO₃@SiO₂ (b) core-shell nanostructures at 950 °C for 3 h.

Figure S4. EDX spectrum of hollow Y_2SiO_5 : $1\%Ce^{3+}$, $9\%Tb^{3+}$ nanowalnuts, the inset shows the TEM image. The atomic ratios of Y, Ce and Tb is estimated to be 18.49: 0.24: 2.11, which is very closed to 90: 1: 9.

Figure S5. Photoluminescence excitation and emission spectra of Ce(NO3)3 aqueous solution.

Figure S6. Decay curves of Y_2SiO_5 : Ce³⁺@SiO₂ and Y_2SiO_5 : Ce³⁺, Tb³⁺@SiO₂ nanoparticles.