

Electronic Supplementary Information

Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

Ke Zhang, Duan Bin, Beibei Yang, Caiqin Wang, Fangfang Ren, Yukou Du*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. E-mail: duyk@suda.edu.cn

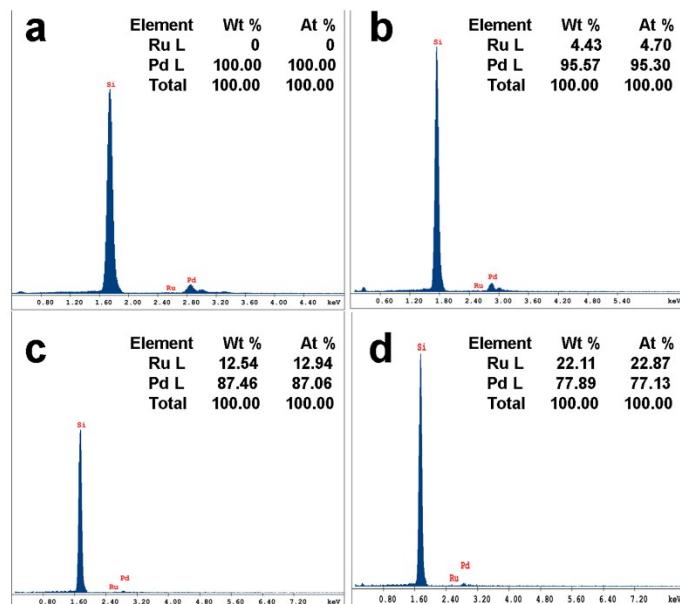


Figure S1 EDS patterns of the Pd (a), Pd₂₀/Ru₁ (b), Pd₇/Ru₁ (c) and Pd₃/Ru₁ (d). Slide glass were used as EDS substrates.

Table S1 Summary of molar ratios for catalysts based on EDS and ICP analysis

Catalysts	Molar ratio by EDS (Pd/Ru)	Molar ratio by ICP (Pd/Ru)
Pd ₂₀ /Ru ₁	20.28/1	22.20/1
Pd ₇ /Ru ₁	6.73/1	6.76/1
Pd ₃ /Ru ₁	3.37/1	3.91/1

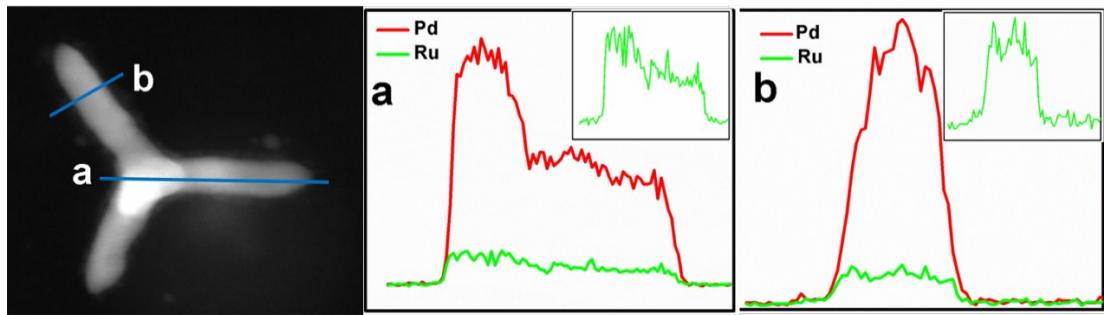


Figure S2 EDX line scan profile of Pd_7/Ru_1 nanocomposite.

From the line-scanning profile across the particle, the intensity of the Pd-L line is somewhat stronger than that of the Ru-L line, but they are similar in shape, indicating a uniform distribution of both Pd and Ru atoms within the alloy nanoparticles.

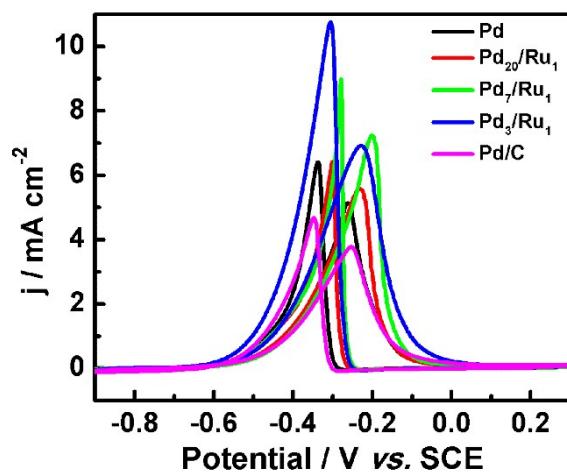


Figure S3 CVs of Pd, $\text{Pd}_{20}/\text{Ru}_1$, Pd_7/Ru_1 , Pd_3/Ru_1 and Pd/C catalysts in 1.0 M $\text{CH}_3\text{CH}_2\text{OH}$ + 1.0 M KOH at a scan rate of 50 mV s⁻¹.

Figure S3 shows the CVs of ethanol oxidation on Pd, $\text{Pd}_{20}/\text{Ru}_1$, Pd_7/Ru_1 , Pd_3/Ru_1 and Pd/C catalysts in 1.0 M $\text{CH}_3\text{CH}_2\text{OH}$ + 1.0 M KOH at a scan rate of 50 mV s⁻¹. The current densities are normalized to the ECSA. As shown in Figure S3, the Pd_7/Ru_1 catalyst exhibits higher current density toward ethanol oxidation than any other catalysts. Besides, all the Pd/Ru catalysts exhibit higher current densities than that of Pd, which are basically consistent with the results of Figure 5 in the manuscript.

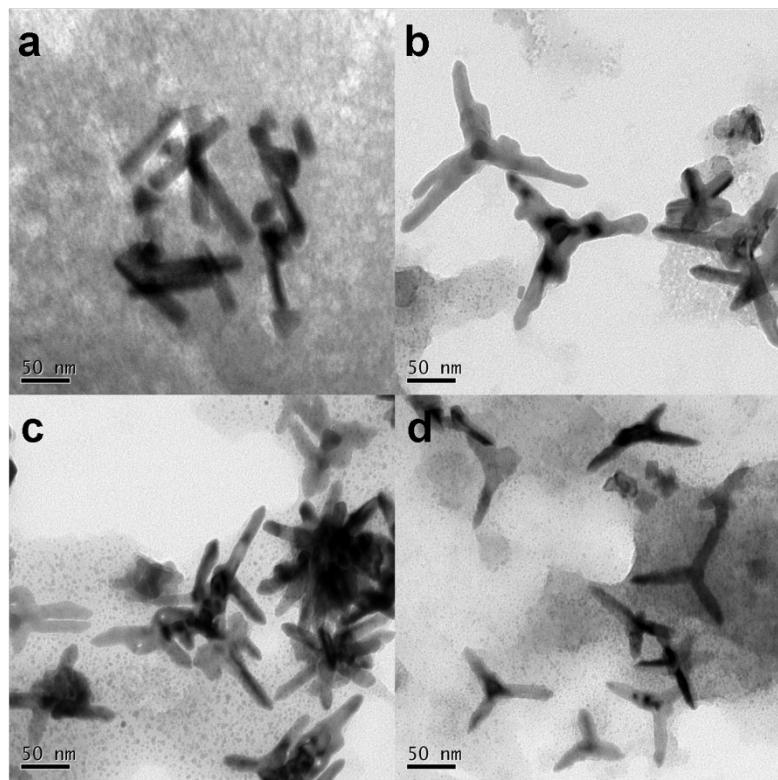


Figure S4 Representative TEM images of Pd (a), Pd₂₀/Ru₁ (b), Pd₇/Ru₁ (c) and Pd₃/Ru₁ (d) after chronoamperometric test of 3600 s.

As shown in Figure S4, it is clearly observed that some Pd nanoparticles aggregate after durability test (Figure S4a). While for Pd/Ru catalyst, the Pd/Ru nanoparticles are still distributed well and almost have no obvious changes after chronoamperometric experiment.