Supporting Information

Performance Enhancement of Metal Nanowire-based Transparent Electrodes by

Electrically Driven Nanoscale Nucleation of Metal Oxides

Yu-Jeng Shiau,[†] Kai-Ming Chiang[†] and Hao-Wu Lin^{*,†}

[†]Department of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 30013, Taiwan

* Corresponding Author: hwlin@mx.nthu.edu.tw (H.-W. Lin)

Contents	page
Electrical contact for ZnO nucleation treatment: Fig. S1	S2
Experimental set up flow diagram of nanoscale Ag atom migration: Fig. S2	S2
R_{sh} reduction with current injections on pristine AgNW networks: Fig. S3	S3
Experimental set up flow diagram of conventional sol-gel ZnO: Fig. S4	S3
Reduction of Rsh by thermal annealing of pristine AgNW: Table S1	S4
Zoomed-in SEM images of nanoscale ZnO nucleation AgNW: Fig. S5	S5
Photograph of nanoscale ZnO nucleation on AgNWs and conventional sol-gel ZnO AgNWs on PEN: Figure S6	S6
Diameter of 35 nm vs. 90 nm AgNW under ZnO nucleation treatment: Fig. S7	S7
Large area AgNW TCE uniformity of R _{sh} after ZnO nucleation treatment: Fig S8	S 8

Electrical contact for ZnO nucleation treatment

Fig. S1 (a) Cu tape and (b) Ag paste electrical contact for ZnO nucleation treatment.

Experimental set up flow diagram of nanoscale Ag atom migration

Fig. S2 Experimental set up showing nanoscale Ag atom migration at a junction. The red dot represents where the migration might occur by joule heating.

R_{sh} reduction with current injections on pristine AgNW networks

Fig. S3 Sheet resistance R_{sh} reduction under various current injections on pristine AgNW network. The R_{sh} is successfully reduced by about 1.5 orders of magnitude within 150 s. The inset shows that electrical breakdown of AgNWs is observed after extended current injection.

Experimental set up flow diagram of conventional sol-gel ZnO

Fig. S4 Experimental set up showing conventional sol-gel ZnO deposition via 5 min annealing at 150 °C.

Temperature (°C)	Time (min)	Sheet resistance(Ω sq ⁻¹)
100	20	595
120	20	502
140	20	286
160	20	200
180	20	206
200	20	$> 1 \times 10^7$ (AgNW breakdown)

Reduction of R_{sh} by thermal annealing of pristine AgNW

 $R_{sh} \ initial \sim 1100 \ (\Omega \ sq^{\text{-}1})$

Table S1 Reduction of R_{sh} under various annealing temperature.

Zoomed-in SEM images of nanoscale ZnO nucleation AgNW

Fig. S5 Zoomed-in field emission scanning electron microscope (FE-SEM) images of nanoscale ZnO nucleation AgNW.

Photograph of nanoscale ZnO nucleation on AgNWs and conventional sol-gel ZnO AgNWs on PEN

Fig. S6 Photograph of flexible TCE fabricated by conventional sol-gel ZnO treated AgNWs (left, $R_{sh} = 27 \ \Omega/sq$) and electrically driven nanoscale ZnO nucleation treated AgNWs (right, $R_{sh} = 22 \ \Omega/sq$) on PEN.

Diameter of 35 nm vs. 90 nm AgNW under ZnO nucleation treatment

Fig. S7 R_{sh} reduction under 800 mA applied current on d = 35 and 90 nm ZnO nucleation treated AgNW TCE. The final resistance shows similar values of 18 and 13 Ω sq⁻¹ respectively.

Large area AgNW TCE uniformity of R_{sh} after ZnO nucleation treatment

Fig. S8 Large area AgNW TCE uniformity of R_{sh} after ZnO nucleation treatment.