Nanoscale

ARTICLE

Ultra-Stable Small Diameter Hybrid Transition Metal Dichalcogenide Nanotubes X-TM-Y (X, Y = S, Se, Te; TM = Mo, W, Nb, Ta)

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Wen Zhao,^{a,b} Yuanchang Li,^c Wenhui Duan^b and Feng Ding^a

www.rsc.org/

The classical model

Fig. SI (a) When a flat SMoTe monolayer is rolled into a ZZ tube, we suppose its axial direction (also armchair direction, AC) lattice constant is fastened with $\sqrt{3}a_H$, which indicates the S-S distance along the axial direction is also $\sqrt{3}a_H$, i.e., **stretched** by $(\sqrt{3}a_H - \sqrt{3}a_1)/\sqrt{3}a_1$ compared to that in pure MoS₂ tube, while the Te-Te distance is **compressed** by $(\sqrt{3}a_2 - \sqrt{3}a_H)/\sqrt{3}a_2$. (b) Then the S-S and Te-Te distance in the lateral direction will have opposite changes due to Poisson's effect, which makes a_1 shorten to a'_1 and a_2 lengthen to a'_2 .

Parameters and results

TABLE SI: The strip-tube transition diameter (D_{s-t}) , optimal radii of *X*-TM-*Y* hybrid NTs obtained from the model (R_0) and from fitting to the DFT results (R_{DFT}) in the unit of nm, and the energy difference between a hybrid tube and the corresponding monolayer (ε_{c0} in meV). The fitted coefficients α (eVÅ²/atom) in Eq. (3), the in-plane

DOI: 10.1039/x0xx00000x

					· , 1			- 2		~ - 2 -			
Х	TM	Y	a_H	v_1	h_1	a_1	<i>v</i> ₂	h_2	a_2	$R_{\rm O}$	$R_{\rm DFT}$	D_{s-t}	ε_{c0}
S	Mo	Te	3.38	0.25	3.13	3.19	0.24	3.62	3.56	2.5	1.9	2.0	-43
			(3.36)										
Se	Mo	Te	3.45	0.23	3.35	3.33	0.24	3.62	3.56	4.2	3.0	3.0	-20
			(3.42)										
S	Mo	Se	3.26	0.25	3.13	3.19	0.23	3.35	3.33	6.1	4.2	3.1	-8
			(3.26)										
S	W	Te	3.38	0.22	3.14	3.19	0.18	3.63	3.56	2.6	1.9	2.2	-48
			(3.36)										
Se	W	Te	3.44	0.19	3.36	3.32	0.18	3.63	3.56	4.2	3.2	3.2	-19
			(3.42)										
S	W	Se	3.26	0.22	3.14	3.19	0.19	3.36	3.32	6.7	4.2	3.2	-9
			(3.26)										
S	Nb	Te	3.53	0.38	3.14	3.36	0.35	3.69	3.70	2.6	2.3	2.3	-21
			(3.53)										
Se	Nb	Te	3.59	0.36	3.37	3.48	0.35	3.69	3.70	4.3	3.8	3.6	-8
			(3.60)										
S	Nb	Se	3.42	0.38	3.14	3.36	0.36	3.37	3.48	6.7	5.1	4.1	-4
			(3.43)										
S	Та	Te	3.53	0.35	3.13	3.34	0.35	3.66	3.71	2.4	2.0	2.3	-33
			(3.52)										
Se	Та	Te	3.60	0.35	3.36	3.48	0.35	3.66	3.71	4.1	3.4	3.5	-12
			(3.59)										
S	Та	Se	3.41	0.35	3.13	3.34	0.35	3.36	3.48	5.9	4.7	4.4	-5
			(3.40)										

Notes and references

- 1. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi and W. Tang, *Physica B*, 2011, **406**, 2254-2260.
 - J. Kang and J. Li, in *MoS*₂, Springer, 2014, pp. 77-101.
- Y. Li, S. Tongay, Q. Yue, J. Kang, J. Wu and J. Li, J. Appl. Phys., 2013, 114, 174307.
- S. V. Khare, COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) delivery order 0070: Ab-initio modeling of slippery hexagonal solids, DTIC Document, 2008.

2.

^{a.} Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China.

^{b.} State Key Laboratory of Low-Dimensional Quantum Physics and Collaborative Innovation Center of Quantum Matter, Department of Physics, Tsinghua University, Beijing 100084, China.

 ^c National Center for Nanoscience and Technology, Beijing 100190, China.
[†] Electronic Supplementary Information (ESI) available: See

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2015