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These supplementary notes to the paper Buck-
led Diamond-like Carbon Nanomechanical Res-
onators are organized as follows: First, we present
and discuss some details of our measurement data
for the diamond-like carbon (DLC) resonators.
This is followed by a section where we highlight
the importance of a good mechanical contact be-
tween DLC and the support structure; a feature
that we believe is the origin of the smallness of
the measured effective resonator width W . We
then present measurements on surface roughness
and discuss its relation to the material parameters
used to fit the measured data to the model. We
end by giving a detailed account for the derivation
of the equations describing the eigenspectrum of
buckled beams under electrostatic load.

TRANSMISSION OF THE MOTIONAL BRANCH

Transmission through the DLC resonator device was
measured with a vector network analyzer (VNA), which
enabled recording both magnitude and phase informa-
tion. As the impedance of the parasitic capacitance is
smaller than the impedance of the motional RLC res-
onator, the resonance lineshape consists of an upward
peak, followed immediately by a downward peak. If we
subtract the vector background that arises due to para-
sitics, we are left with a transmission spectrum for the
motional RLC branch only (Fig. 1a). The magnitude
of this motional RLC resonance takes on the conven-
tional Lorentzian lineshape, limited by noise from the
VNA when moving far away from resonance.

To visualize the complex form of the transmission, we
can plot its real and imaginary parts in the complex plane
while sweeping frequency near the resonance (Fig. 1b).
This representation, known as the Nyquist plot, should
form a circular or an elliptical response depending on
whether the resonance is linear or nonlinear, respectively.
From Fig. 1b we can deduce that no prominent nonlinear
effects are present in the DLC resonator at low drive
powers.
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FIG. 1. (a) Transmission through the DLC resonator at dc
bias Vdc = −10 V and P = −40 dBm with parasitic compo-
nents subtracted. (b) Nyquist plot of the same data in the
complex plane. The dashed blue line shows a circular fit given
by the (motional) RLC model.

IMPERFECT BOUNDARY CONDITIONS

In our measurements we have found that sometimes
the boundary conditions of the resonator are not well de-
fined. This is because of the weak adhesion of DLC to the
supporting Au electrodes. The compressive stress in the
DLC film may partially detach it from the Au surface,
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FIG. 2. (a) SEM image of a DLC resonator with imper-
fect boundary conditions. (b) Optical image of the device,
which shows the irregularities in the clamping. The irregular-
ities split the uniform oscillations into several separate modes.
This reduces the width W of the resonating region.

which leads to ambiguous boundary conditions. These,
in turn, lead to the localization of the resonance modes.
Fig. 2 shows scanning electron microscope (SEM) and
optical images of one particular device with very poor
attachment, and where several resonances were detected.
The effect of the imperfect boundary conditions is thus
that the actual width W of the vibrating region can be
considerably smaller than the width of the entire DLC
sheet. Also, in the better-contacted devices, small irregu-
larities in the clamping can be sufficient to cause splitting
of the modes.

FITTING OF THE FREQUENCY TUNING AND
SURFACE ROUGHNESS

While some of the device parameters are known to
good accuracy, others, such as the thickness t, are harder
to quantify precisely. For nanoresonators it is known that
the effective elastic properties change as the surface-to-
volume ratio increases4. Hence, for a resonator made of a
material with Young’s modulus E, an effective modulus
E∗ 6= E may be needed.

The DLC films used here nominally have a thickness
of t ≈ 20 nm, measured using a DektakXT profilometer.
However, the degree of surface roughness arising from the
fabrication process is relatively large, with a full width at
half maximum (FWHM) on the order of 10 nm as charac-
terized by atomic force microscope (AFM) measurements
(see Fig. 3). This suggests that the dominating surface
effects in our case stem from the surface roughness.

A common model for including the effect of the sur-
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FIG. 3. (top) False colour AFM image of the DLC film. (bot-
tom) Histogram over the surface height distribution.

face is to treat the body as a perfect solid, and emu-
late the surface effects by enclosing it in a 2D elastic
membrane5. Following this approach, it has been shown
that surface roughness leads to a membrane enclosure
which can have a negative effective Young’s modulus6.
For resonator structures, it was further shown that this
decreases the resonant frequency in comparison to using
the bulk value. As a result, the Young’s modulus can be
replaced by an effective one with a value below the bulk
value.

While we have chosen to use the thickness as measured
by the profilometer, i.e. t = 20 nm, when fitting the fre-
quency tuning, it is also possible to fit the data assuming
larger thicknesses, up to t ≈ 25 nm. However, increasing
the thickness requires using a higher effective Young’s
modulus to fit the measured data. From indentation
measurements, we have an upper bound E ≤ 180 GPa
which in practice limits the thickness that can be used in
the fitting.

MECHANICAL MODEL AND RESONANT RESPONSE

This section details the mathematical procedure for
finding the resonant frequencies of the Euler-buckled
beam subject to an external (electrostatic) load. The
fitting of the frequency tuning curves, including both ge-
ometric and electrostatic nonlinearities, were done by nu-
merically solving the resulting equations for the station-
ary problem [Eqs. (3) and (5)] and then for the eigenfre-
quencies [Eq. (6)].

To obtain the necessary equations, we model the sus-
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FIG. 4. Schematic sideview of a downward buckled DLC
membrane of length L, downward deflection w(x, t) = w(x) +
δw(x, t) subject to a bias voltage V (t) = Vdc + Vac(t).

pended part of the DLC resonator as a wide uniform plate
with the material parameters shown in Table I. This
makes the system essentially a 1D problem, namely that
of the vibrations of a buckled beam as shown in Fig. 4.

For a bias voltage V (t) =Vdc+Vac(t), the equation of
motion using the Euler–Bernoulli beam theory is in the
parallel-plate approximation2

ρhW∂2tw +
EWh3

12
∂4xw − σWh∂2xw =

ε0V
2W

2(d− w)2
,

σ = σ0 +
EWh

2L

∫ L/2

−L/2
dx (∂xw)2,

w(±L/2) = ∂xw(±L/2) = 0, (1)

where the small correction due to a finite Poisson’s ratio ν
has been neglected. Rescaling Eq. (1), i.e., putting it on
dimensionless form with characteristic length scale L and

timescale
(
12ρL4/Eh2

)1/2
gives the system of equations[

∂2τ + ∂4x − T∂2x
]
w = f,

T = −T0 + α

∫ 1/2

−1/2
dx (∂xw)

2
,

w(±1/2) = ∂xw(±1/2) = 0. (2)

Here, T = 12σL2/Eh2, T0 = −12σ0L
2/Eh2, f ≈

f0/
[
1− w

d

]2
, with f0 = 6ε0L

3V 2
dc/d

2Eh3 and α =

6L2/h2.

Static solution

To find the response of the sheet we first seek the static
solution. Hence, we set w = w(x)+δw(x, t) and consider
the static problem [∂4x − T∂2x]w = f0(1 − w/d)−2 = f ,
with T = −T0 + α

∫
dx (∂xw)2.

Depending on the sign of the resulting static tension
T one finds the solutions

w− = − f

2T

(
x2 − 1

4

)

TABLE I. Parameters and quantities used in the modeling of
the DLC membrane resonator.

Quantity/parameter Symbol Value or range

Width, W
Length L 1 µm

Thickness h 20 nm (<25 nm)
Mass density ρ 2000 kg/m3

Young’s modulus E 140 GPa to 180 GPa
Suspension height d 205 nm

Bias voltage V (t)
In-plane stress σ (t)

Initial compressive stress −σ0 <2.0 GPa
Vacuum permittivity ε0 8.854×10−12 F/m

Vertical deflection w(x, t)
(
−L

2
<x<L

2

)

+
f

2|T |3/2

cos

(√
|T |x

)
− cos

(
1
2

√
|T |
)

sin

(
1
2

√
|T |
) (3)

for T < 0 and

w+ = − f

2T

(
x2 − 1

4

)

+
f

2|T |3/2

cosh

(√
|T |x

)
− cosh

(
1
2

√
|T |
)

sinh

(
1
2

√
|T |
) (4)

for T > 0. The equilibrium tension is found from solving
the equations

T = −T0 +α
f
2

T
2

 2

T
+

1

12
+

1

8
√
|T |

√
|T |+ 3 sin

√
|T |

sin2 1
2

√
|T |


(5)

for T < 0 and

T= −T0+α
f
2

T
2

(
2

T
+

1

12
− 1

8
√
T

√
T+3sinh

√
T

sinh2 1
2

√
T

)
, T> 0.

Note that although Eq. (3) seems to give zero static de-
flection when f → 0, the Euler buckling solutions for
f = 0 are contained in the solution Eq. (3) due to the
limiting behavior of Eq. (5) when f → 0.

Small vibrations around equilibrium

To find the resonant mode shape and frequency of the
fundamental mode, we linearize Eq. (2) around the equi-
librium solution w to obtain the eigenvalue problem[

∂2t +∂4x−T∂2x−
2f

d−w

]
δw=δT ∂2xw,
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where δT= 2α
∫
dx (∂xw) (∂xδw) = −2α

∫
dx δw ∂2xw.

This eigenvalue problem has the general form

(∂4x − T∂2x − λ2)u = −h(x)

∫
dx′h(x′)u(x′)

with λ2=ω2+2f/(d− w) and

h(x) =


√

2α f

|T |

(
1−

√
|T |
2

cos
√
|T |x

sin 1
2

√
|T |

)
, T < 0

√
2α f

|T |

(
−1 +

√
|T |
2

cosh
√
|T |x

sinh 1
2

√
|T |

)
, T > 0.

Following Ref.3 we set u = u0 + Ah(x) and note that(
∂4x − T∂2x

)
h (x) = 0. This implies that the solution to

the problem is found by solving the simultaneous equa-
tions

(
∂4x−T∂2x−λ2

)
u0= 0, Aλ2=

∫
dx h (x) [u0 (x) +Ah (x)] .

Below we will restrict attention to the fundamental mode
examined in the main part of the paper.

Fundamental mode resonant frequency, compressive stress

For T < 0 we make the following Ansatz for the fun-
damental mode

u0=Bcosβx +Ccosh γx

leading to the secular equations β4−
∣∣T ∣∣β2−λ2 = 0 and

γ4 +
∣∣T ∣∣ γ2 − λ2 = 0. To satisfy the boundary conditions

one must further fulfill the relations

Ah (1/2) +Bcosβ/2 +Ccosh γ/2 = 0

Ah
′
(1/2)−Bβsinβ/2 +Cγsinh γ/2 = 0.

As we are only interested in the spectrum, we are free
to choose the normalization such that A = 1. Hence,

to find the frequency of the fundamental mode under
compressive stress one should solve the equation

λ2=

∫
dx h(x)[Bcos (βx) +Ccosh γx +h(x)]. (6)

Here β, γ, B and C depend on λ2 according to

β=

√√
T

2
/4+λ2−T/2 , γ=

√√
T

2
/4+λ2+T/2 , (7)

B= − γh (1/2) sinh γ/2 −h′
(1/2) cosh γ /2

βcosh γ/2 sinβ/2 +γsinh γ/2 cosβ/2
, (8)

C= − βh (1/2) sinβ/2 +h
′
(1/2) cosβ/2

βcosh γ/2 sinβ/2 +γsinh γ/2 cosβ/2
. (9)

The mode shapes and resonant frequencies can now be
found by solving the eigenvalue equation [Eq. (6)] for
λ2. While some progress can be made analytically by
carrying out the integrals, a numerical solution is needed
to find the spectrum.

Fundamental mode, tensile stress

For completeness we also briefly comment on the
solution for tensile stress T > 0. In this case the
same Ansatz can be used for the fundamental mode
shape, i.e., u0=Bcosβx +Ccosh γx . However, the
equations for wavenumbers become reversed, and we
now get β4 +

∣∣T ∣∣β2 − λ2 = 0 and γ4 −
∣∣T ∣∣ γ2 − λ2 = 0.

The formulas for coefficients B and C remain unchanged.
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