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1. Model and methodology

1.1. DPD method

Dissipative particle dynamics (DPD) method is a coarse-grained simulation technique, which

can correctly account for the hydrodynamic interactions by considering water molecules

explicitly [1–3]. In the DPD simulation, each bead with mass m represents a group of atoms

or molecules. Beads i and j interact with each other through a pairwise addictive force with

three major contributions: (i) a conservative force FC
ij; (ii) a dissipative force FD

ij ; and (iii) a

random force FR
ij . Therefore, the force applied on atom i due to atom j is given as a sum of

these three terms:

Fi = FC
ij + FD

ij + FR
ij, rij < rc (1)

where rij is the distance between beads i and j; rc is the cutoff distance. The conservative

force is FC
ij = aijω(rij)r̂ij , where aij is the maximum repulsive force and r̂ij = rij/rij is the

unit vector. The weight ω(rij) is a normalized distribution function, defined as

ω(rij) =

{
1− rij/rc, rij ≤ rc,

0, rij > rc.
(2)

Dissipative force FD
ij = −γω2(rij)(r̂ij v̇ij)r̂ij , with vij representing the relative velocity

between beads i and j. Random force FR
ij = σω(rij)αδt

−1/2r̂ij . α is a Gaussian random

number with zero mean and unit variance. δt is the time step. The parameters γ and σ are

related to each other as σ2 = 2γkBT , where kB and T are the Boltzmann’s constant and

temperature, respectively.

In our DPD simulation, the mass, length, and time scale are all normalized. The unit

of length is taken to be the cutoff radius rc. The unit of mass is that of the solvent beads.

The unit of energy is taken to be kBT . Then, all other quantities are given in terms of

these basic units. In terms of normalized units, we use the standard values for σ and γ as

σ = 3.0 and γ = 4.5. The reduced DPD units can be easily converted into the SI units by

mapping the membrane thickness and lipid diffusion coefficient from DPD simulation results

to experimental measured values. In our DPD simulations, the velocity-Verlet integration

algorithm is adopted and the simulation time step is δt = 0.01τ with τ = [mr2c/(kBT )]
1/2.

1.2. DPD model for lipid bilayer

Similar to the lipid model developed by Groot and Rabone [4], the lipid is represented by the

H3(T5)2 model. The head of lipid molecule is formed by three hydrophilic beads (H), while

each of the tails is formed by five hydrophobic beads (T). The head and tail beads are colored

by iceblue and silver, respectively. The neighboring beads i and j in the lipid are connected

together by a simple harmonic spring:

Us = ks(1− rij/rs)
2, (3)
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where spring constant ks = 50kBT/r
2
c and equilibrium bond length rs = 0.7rc [4]. To ensure

the linearity of the lipid head as well as its tail, a harmonic constraint is applied on the adjacent

three beads,

Ub = kb(θ − θ0)
2, (4)

where kb, θ and θ0 are the bending constant, the inclination angle, and equilibrium angle

value, respectively. Following the work done by Groot and Rabone [4], k1 = 3.0kBT/r
2
c and

θ0 = 180◦ for the three consecutive lipid head/tail beads in the lipid molecules. However,

for the head bead connected to the first beads in the two tails, k2 = 1.5kBT/r
2
c and θ0 =

120◦. For the two consecutive head beads connected to the first bead in each tail, we have

k3 = 2.25kBT/r
2
c and θ0 = 120◦. To represent the hydrophilic/hydrophobic property of the

head and tail beads in the lipid molecule, the repulsive interaction parameters for the same

type of beads are aij = 25. The interaction parameters for lipid head/tail with solvent (water)

molecules are aHT = aST = 100 and aHS = aSS = 25. Here H, T and S represent the lipid

head, tail and solvent (water) beads in the DPD model.

The simulation box for studying PEGylated NPs is a cube of size 51.2×51.2×51.2rc,

with periodic boundary condition applied along x, y and z directions. There are 2,888

lipid molecules (37,544 beads in total) with 396,566 solvent beads. Therefore, the particle

density is close to 3.0. For clarity, the solvent beads are not shown in the figures. The area

per lipid is about 1.81r2c , which ensures the zero surface tension of the lipid bilayer [4–6].

The simulated lipid bilayer thickness is about 5rc. By comparing with the experimentally

measured thickness for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer,

which is about 4 nm [7], the basic length unit in the DPD simulation is about rc ∼ 0.8 nm.

By mapping the diffusion coefficient around 5 μm2/s for POPC bilayer [7], the time unit in

the DPD simulation is about τ = 24.32 ps.

1.3. DPD model for polyethylene glycol

Polyethylene glycol (PEG) is a hydrophilic polymer with chemical structure H-(O-CH2-

CH2)n-OH, which is also known as the polyethylene oxide (PEO) or polyoxyethylene (POE),

depending on its molecule weight. To efficiently model the PEG polymer in our DPD

simulations, we adopt the coarse-grained model for PEG developed by Lee et al [8]. In this

model, each ethylene oxide (O-CH2-CH2) group has been coarse-grained into one bead. The

neighboring beads on each PEG chain are connected by a harmonic bond

Ubond = Kb(b− b0)
2, (5)

where Kb is the bond potential constant, b and b0 are the instantaneous and equilibrium bond

lengths between PEG monomers, respectively. Here Kb = 8500 kJ mol−1 nm−2 and b0 =

0.33 nm. The angle potential formed by a triplet is described by

Uangle = Kθ(cos θ − cos θ0)
2, (6)

where Kθ is the angle potential constant, θ and θ0 are the instantaneous and equilibrium

angles formed by two consecutive bonds, respectively. Kθ = 42.5 kJ mol−1 and θ0 = 130◦.
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Table S1. Interaction parameters between beads i and j, aij . S, H, T, E and P represent the

solvent, lipid head, lipid tail, PEG and NP beads, respectively. aij − aii = 3.27χij , where χij

is the Flory-Huggins parameter. The Flory-Huggins parameters between PEG (E), lipid head

(H) and lipid tails (T) beads are taken from the work done by Groot and Rabone [4], calibrated

by experimental studies.

aij S H T E P

S 25.0 25.0 100.0 26.3 100.0

H 25.0 25.0 100.0 26.3 100.0

T 100.0 100.0 25.0 33.7 50.0

E 26.3 26.3 33.7 25.0 100.0

P 100.0 100.0 50.0 100.0 25.0

In the previous work done by Lee et al [8], the pair interactions are described by the classical

Lennard-Jones 6-12 potential. However, in the DPD simulation, the pair interactions are

represented by the conservative force FC
ij with strength of repulsion parameter aij . According

to the previous experimental [9] and computational [4] studies, we set aES = 26.3 and aEE =

25. Here the subscripts E and S denote the ethylene oxide and solvent, respectively. The

repulsive parameters aij between different beads in our DPD simulations are summarized in

Table S1.

To validate and verify the PEG model adopted in our DPD simulation, we have studied

the radius of gyration (Rg) and end-to-end distance (Ree) of PEG with different chain lengths

N . The simulation box of size 30 × 30 × 30 rc with periodical boundary conditions applied

along x, y and z directions. A single PEG chain with length N ∈ [9, 76] is inserted into

the simulation box. Then, the additional solvent beads are added into the simulation box to

satisfy the particle density 3.0. The system has been firstly equilibrated around 2 million

time steps. Then, the coordinates of PEG chain have been saved every 2000 time steps in

another 2 million time step simulation. As discussed in our previous study [10], the Rg and

Ree predicted by our DPD simulations are in good agreement with the values obtained from

all-atom and coarse-grained (CG) simulations, reported by Lee et al [8].

2. Conformation of PEGylated nanoparticles (NPs)

With the given interaction parameters described in above sections and our previous work

[10], all the PEGylated NPs have been well-equilibrated within water. The equilibrated

configurations for PEGylated NPs are given in Figs. S1-S4. When the grafting density is

low (such as 0.2 chains/nm2), the grafted PEG are far away from each other and isolated.

They are collapsed on the surfaces of NPs to form a ‘mushroom’ conformation to minimize

the entropy loss. However, if the grafting density is high (such as 1.6 chains/nm2), the grafted

PEG chains are very close to each other. To reduce the interaction energy between them, the

tethered PEG are stretched away from the surface and form a ‘brush’ conformation.

The conformation of the grafted polymer chains at a solid surface has been theoretical
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studied by Szleifer and co-workers [11–13] in molecular detail. Qualitatively similar

conclusions are obtained using the SCF approaches [14, 15]. When the grafting density is

small and the surface is repulsive for the monomers of tethered chains, the grafted polymers

are isolated. They are collapsed on the surface to reduce the conformational entropy loss.

Such a conformation is so-called ‘mushroom’ regime. However, when the grafting density

is very large, the tethered chains have to stretch out of the surface to minimize the steric

(intermolecular) interactions, by forming the ‘brush’ regime. In the range of molecular

weights adopted in biocompatible materials and drug carriers, the conformation of tethered

PEG polymers gradually change from ‘mushroom’ to ‘brush’ conformations, without a

sharp boundary. Such a phenomenon has been confirmed by our molecular simulations for

PEGylated NPs with different shapes (cf. Figs. S1-S4).

The geometric parameters for the studied NP cores are:

Rsphere = 4 nm,

Rdisk = 5.66 nm,

Lcube = 5.79 nm,

Rrod = 2.31 nm, Lrod = 9.23 nm. (7)

They are compatible with a NP surface area Asurf = 201 nm2 for all geometries. Throughout

the number of PEG monomers per chain is Np = 30, corresponding to molecular weight

1358 Da. With V (R), supplemented by indices that characterize the NP core shape and its

dimensions, we denote the volume of the PEGylated NP with homogeneous brush height R.

V0(R) = V (R)/M stands for the mean volume per chain, where M = Asurfσp denotes the

number of chains tethered onto a single NP. Grafting densities are varied as σp = 0.2, 0.4, ...,

1.6 chains/nm2.
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0.2 chains/

1.0 chains/

0.4 chains/

1.2 chains/

0.6 chains/

1.4 chains/

0.8 chains/

1.6 chains/

Figure S1. Spherical NP core. Models for PEGylated NPs with grafted PEG chains for various

surface densities. The core beads are colored by yellow. The grafted PEG chains and targeting

moieties bound to their free ends are colored by cyan and blue, respectively. For clarity, the

solvent molecules are made invisible.

0.2 chains/

1.0 chains/

0.4 chains/

1.2 chains/

0.6 chains/

1.4 chains/

0.8 chains/

1.6 chains/

Figure S2. Same as Fig. S1 for the rodlike NP.
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0.2 chains/

1.0 chains/

0.4 chains/

1.2 chains/

0.6 chains/

1.4 chains/

0.8 chains/

1.6 chains/

Figure S3. Same as Fig. S1 for the cubic NP.

0.2 chains/

1.0 chains/

0.4 chains/

1.2 chains/

0.6 chains/

1.4 chains/

0.8 chains/

1.6 chains/

Figure S4. Same as Fig. S1 for the disk-like NP.
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3. Areas and volumes; Flory theory for tethered chains

How can we understand why the extensions are of similar magnitude for the chosen setups,

while it is well known that curvature effects play a major role for the extension of a polymer

brush? Consider sphere and rod with hemispherical end caps, at same Np, same number of

chains M , and same grafting density σp. The volumes of assumed homogeneous polymer

coatings of thickness R are

V sphere
R (R) = (4π/3)[(R+R)3 −R3], (8)

V rod
R,L(R) = π[(R+R)2 −R2]L+ V sphere

R (R) (9)

for a sphere of radius R, and a rod of length L with hemispherical end caps of radius R.

Tethering surface areas

Asphere
R = 4πR2, (10)

Arod
R,L = 2πRL+ Asphere

R (11)

The requirement of identical surface areas Asurf = Asphere
R = Arod

R,L implies Lrod = 2(R2
sphere −

R2
rod)/Rrod. The grafting density is σp = M/Asurf, where M denotes the number of tethered

chains. We can thus replace Rsphere by (M/4πσp)
1/2 and are left with variable Rrod. For small

R � Rrod and R � Rsphere the volume is AsurfR in either case, as for a planar setup. For

huge R, V sphere
R (R) = V rod

R (R) ∼ R3, due to the end caps. Only in intermediate regimes both

V rod
R (R) and V sphere

R (R) tend to scale with R2. If we expand both volumes in a Taylor series

about R = 0, up to O(R3) we find the corresponding coefficients

V sphere
R (R)− AsurfR√

Asurf R2
= 2

√
π ≈ 3.54, (12)

V rod
R,L(R)− AsurfR√

Asurf R2
= (1 + ρ)

√
π/ρ ≈ 4.09 (13)

that are seen to be insensitive to the choice of R, but depend on the axis ratio of the rod,

ρ = (Lrod + 2Rrod)/2Rrod; ρ = 3 in our simulations. Because the two numbers in Eq. 12

are not very different for our chosen setup, the extension of the brush is expected to be very

comparable for all grafting densities, if we compare spherical with rodlike geometries. The

sphere should tend to have a slightly larger extension due to its smaller volume, V sphere
R (R) <

V rod
R (R) for all R, as long as ρ exceeds 2.54. We can do analogous calculations for cubes and

disks using

V cube
L (R) = 6RL2 + 4πR3/3 + 3πLR2, (14)

V disk
R (R) = πR(4R2 + 3πRR+ 6R2)/3 (15)

while Acube
L = 6L2 and Adisk

R = 2πR2. The result is, up to order O(R3),

V cube
L (R)− AsurfR√

Asurf R2
=

√
3π2/2 ≈ 3.94, (16)

V disk
R (R)− AsurfR√

Asurf R2
=

√
π3/2 ≈ 3.85 (17)
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Again, the coefficients in front of the terms proportional to R2 and of relevance in an

intermediate regime of layer thicknesses are comparable in magnitude.

This idealized consideration assumed that the polymer is homogeneously occupying a

layer of constant thickness R surrounding the NP. A more precise calculation would consider

only the ‘reachable’ volume, starting from an array of tethering points distributed over the NP

surface. This revised volume will be smaller and exhibit more pronounced geometry effects

especially when R is small compared to the linear dimensions of the NP.

As discussed in the main text we can estimate the free energy of the coated NP before

endocytosis not only via SCF but also using a simple Flory approach. This paragraph aims

at exemplifying on how to obtain scaling laws that help to estimate the overall trends upon

changing systems parameters, while a numerical implementation is trivial as well. Within this

approach the free energy per chain is

Fpoly(R)

kBT
=

3ζ

2

(
R2

R2
0

+
R2

0

R2

)
+Np

vfm(φ0)

φ0

(18)

with mixing free energy density vfm(φ) = τφ2 + wφ3 and unconfined end-to-end distance

R0 ≈ 0.57
√

Np nm for PEG following our previous works [10]. Here φ0 = φ0(R) =

Npv/V0(R) stands for the yet unknown mean polymer volume fraction within the coating,

V0(R) = V (R)/Asurfσp is the accessible volume per single chain, where the total volume of

the R-coated NP, V (R), and the surface area of the naked NP, Asurf, were given above for the

various geometries; ζ is a constant of order unity, and v ≈ 0.0633 nm2 is the excluded volume

of each of the Np PEG monomers per chain.

For the special case of good solvent conditions, w = 0, R � R0 and Eq. 18 reduces to

Fpoly(R)

kBT
	 3ζ

R2
0

(
R2

2
+

βσp

V (R)

)
, β ≡ N2

p τvAsurfR
2
0/3ζ (19)

where β ≈ 37, 200 nm7 is a constant for all simulated systems, since Asurf = 201 nm2 for

all geometries, and because we use τ = 1 = ζ/2 for PEG at the investigated temperature.

Scaling behaviors are of course unaffected by the choice of numerical coefficients such as τ ,

v, R2
0/Np, or ζ . Minimizing Fpoly with respect to R yields an equation RV 2(R) = βσpV

′(R)

for the equilibrium extension Req of the brush. For the special case of V (R) = αRμ the

solution is

Req =

(
βσpμ

α

)1/(2+μ)

(20)

As we discussed, μ ∈ [1, 3] for our systems, depending on the magnitude of Req with respect

to NP dimensions, and the numerical factor α can be read off from the analytical expressions

for the volumes for each of the geometries. For μ = 1, α = Asurf; for μ = 2 the α’s correspond

to
√
Asurf times the numerical factors mentioned in Eqs. 12 and 16, and for μ = 3, α = 4π/3.

That is, α 	 A
(3−μ)/2
surf and Eq. 20 simplifies to

Req 	
(

βσpμ

A
(3−μ)/2
surf

)1/(2+μ)

(21)

Because we fixed Asurf and β in our simulations, we can use this formula supplemented by

the mentioned numerical prefactors to roughly estimate the brush height for the different
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shapes as function of σp. In addition, it can be used to predict the brush height and size of

the PEGylated NP for systems with arbitrary Np, Asurf, V , and shape characterized by μ and

numerical prefactor. In a more accurate numerical implementation, one instead minimizes Eq.

19 directly to obtain Req. Upon inserting Req into F we obtain the equilibrium free energy

per chain

F eq
poly

kBT
=

3(2 + μ)βζσp

2R2
0V (Req)

=
3(2 + μ)βσp

αR2
0

(
βσpμ

α

)−μ/(2+μ)

(22)

Using this expression, we can read off the scaling behavior of the equilibrium free energy of

a single chain under good solvent conditions

F eq
poly

kBT
∼ σ2/(2+μ)

p A
(μ−1)/(2+μ)
surf N (4−μ)/(2+μ) (23)

since V (Req) = αRμ
eq, and where we highlighted the effect of grafting density σp, total surface

area Asurf, and chain length, Np on the equilibrium free energy. The total free energy of the

PEGylated NOP is a factor σpAsurf larger, and it scales with σp as σ
5/3
p (μ = 1), σ

3/2
p (μ = 2),

and σ
7/5
p (μ = 3). Similarly, we can discuss the scaling behavior of Req or φeq

0 = φ0(Req). For

a quantitative comparison between Flory theory and our simulation results before endocytosis

we use τ = w = 1, and find the minimum of Fpoly numerically using the complete expressions

for the coated volumes V (R) of the various geometries given in Eqs. 8, 9, 14, and 15. The

scaling results in Eqs. 22 and 23 just serve to highlight on how to obtain qualitative behavior

via the Flory route.

The free energies for both configurations, before and after endocytosis, we calculate

starting from an SCF expression, as described in our previous study [10], using the surface

normals to calculate 〈r2〉 for the estimation of Fel, while Fint is directly obtained from the

recorded volume fraction profile on a grid. In contrast to the SCF approach, the above-

mentioned Flory approach cannot be used to calculate free energies after endocytosis because

the Flory approach implicitly assumes a constant volume fraction profile. The observed large

inhomogeneities, and stretch of selected polymers that are bound to receptors, would falsify

this approach. Still, an increase of the Flory free energy is expected due to the overall decrease

of available volume after endocytosis.
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4. Internalization pathway of PEGylated nanoparticles (NPs)

t=0

t=0.24 μs t=0.49 μs t=7.17 μs

Figure S5. Representative DPD simulation snapshots at specified times for the internalization

process of PEGylated spherical NP with grafting density σp = 0.2 chains/nm2. The core of

PEGylated NP is colored by yellow. The grafted PEG chains are colored by cyan. The lipid

heads and tails are represented by iceblue beads and silver lines, respectively. The targeting

moieties conjugated on the free ends of grafted chains are colored by blue. Gray beads on the

lipid heads denote the receptor, which have attractive interactions with targeting moieties with

strength εb = 7.65kBT .

t=0

t=0.24 μs t=0.49 μs t=7.17 μs

Figure S6. Same as Fig. S5 for the rod-like NP (again for σp = 0.2 chains/nm2).
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t=0
t=0.24 μs t=0.49 μs t=7.17 μs

Figure S7. Same as Fig. S5 for the cubic NP (again for σp = 0.2 chains/nm2).

t=0

t=0.24 μs t=0.49 μs t=7.17 μs

Figure S8. Same as Fig. S5 for the disk-like NP (again for σp = 0.2 chains/nm2).
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5. Volume fraction distributions of PEG monomers

Before Endocytosis Before EndocytosisAfter Endocytosis After Endocytosis

0 0.60.30.15 0.45

Sphere

Cube Disk

Rod

Figure S9. Cross-sectional views on the PEG volume fraction profiles φ(r) of differently

shaped NPs with grafting density σp = 0.6 chains/nm2 before and after endocytosis. Note that

the rod- and disk-like NPs are not fully internalized.

Before Endocytosis Before EndocytosisAfter Endocytosis After Endocytosis

0 0.60.30.15 0.45

Sphere

Cube Disk

Rod

Figure S10. Cross-sectional views on the PEG volume fraction profiles φ(r) of differently

shaped NPs with grafting density σp = 1.2 chains/nm2 before and after endocytosis.
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6. Entry angle effect during endocytosis of PEGylated rod- and disk-like NPs

t=0
t=0.05 μs t=0.12 μs t=0.24 μs

t=0.73 μs t=1.70 μs t=2.43 μs t=3.45 μs

Figure S11. Representative DPD simulation snapshots at specified times t for the

internalization process of the PEGylated rod-like NP with grafting density σp = 1.6

chains/nm2 and vertical docking position (shown from two different view points). The core of

PEGylated NP is colored by yellow. The grafted PEG chains are colored by cyan. The lipid

heads and tails are represented by iceblue beads and silver lines, respectively. The targeting

moieties conjugated on the free ends of grafted chains are colored by blue. Gray beads on the

lipid heads denote the receptor, which have attractive interactions with targeting moieties with

strength εb = 7.65kBT .
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t=0
t=0.05 μs t=0.12 μs t=0.24 μs

t=0.73 μs t=1.70 μs t=2.43 μs t=4.13 μs

Figure S12. Same as preceding Fig. S11 now for the disk-like NP in vertical docking position

(again for σp = 1.6 chains/nm2).
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7. Elastic bending energy of membrane

Figure S13. Disk-like (left column) and cuboidal (right column) NPs. The particles are

colored by blue. The endosome shapes are given by the blue outline.

The elastic bending energy associated with the deformation of the membrane during

endocytosis can be determined by the Helfrich-Canham-Evans free energy [16–18],

ΔFmemb =

∫ [
1

2
κ(c1 + c2 − cs)

2 + κc1c2

]
dA, (24)

where κ and κ are the curvature and saddle-splay moduli of the membrane, respectively; c1
and c2 are the two principle curvatures of the final vesicle shape, and cs is the spontaneous

curvature. The product c1c2 is the Gaussian curvature, which usually can be ignored for
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a homogeneous lipid bilayer [16, 19]. Considering the sizes of NPs in this study, the

spontaneous curvature is rather small [20], assuming cs = 0, the above equation further

reduces to

ΔFmemb =

∫
1

2
κ(c1 + c2)

2dA, (25)

Integrating Eq. 25 over the surface area of the endosome shape (membrane wrapped around

the PEGylated NP) renders the elastic bending energy of the membrane. For a spherical NP

with radius Rsphere, the two principle curvatures are constant and c1 = c2 = 1/Rsphere, thus

the elastic bending energy can be analytically obtained as

ΔF sphere
memb = 8πκ. (26)

For a rod-like NP with two hemispherical caps of radius Rrod, and a cylinder with length Lrod

joining them, Eq. 25 can also be analytically solved by splitting the integration into parts (the

spherical caps and the cylindrical surface), gives

ΔF rod
memb = 8πκ+ πκLrod/Rrod, (27)

since the two principle curvatures for a cylinder are c1 = 1/Rrod and c2 = 0. For a cuboid

with length a, width b and height c, the endosomal surface reduces to a single sphere with

radius c/2, a cylinder of radius c/2 and length b, another cylinder of radius b/2 and length a,

and two rectangles with zero curvature, as denoted in Fig. S13. Thus, Eq. 25 can be rewritten

as,

ΔF cuboid
memb =

∫
1

2
κ

(
2

c

)2

dA+

∫
1

2
κ

(
4

c

)2

dA =

[
2(a+ b)

c
+ 8

]
πκ, (28)

where we could evaluate the integrals analytically. For a cubic NP with side length Lcube, we

have a = b = c = Lcube, thus

ΔF cube
memb = 12πκ. (29)

For a disk-like NP, the vesicle shape is assumed to be the outer half of a torus with wheel

radius Rdisk and tube radius p along with two circular, zero curvature, areas of πR2
disk for

each. Thus, according to Eq. 25, the elastic bending energy is

ΔF disk
memb = πκ

∫ π/2

−π/2

[ Rdisk + 2p cos θ

2p (Rdisk + p cos θ)

]2
p (Rdisk + p cos θ) dθ, (30)

where p (Rdisk + p cos θ) is the Jacobian for the half torus and θ is integrated from −π/2 to

π/2. Then, we have

ΔF disk
memb =

⎡⎣2 + R2
disk arctan

√
Rdisk−p
Rdisk+p

p
√R2

disk − p2

⎤⎦ πκ. (31)

Here the thickness of the PEGylated disk is rather small and about 0.344 nm, thus p = 0.172

nm (half of the thickness). Considering Rdisk = 5.66 nm, we have ΔF disk
memb = 27.33πκ.



Electronic Supplementary Information (ESI) 18

8. PEGylated Star-shaped NP

0.2 chains/

1.0 chains/

0.4 chains/

1.2 chains/

0.6 chains/

1.4 chains/

0.8 chains/

1.6 chains/

Figure S14. Same as Fig. S1 for the star-shaped NP.

In recent years, the gold star-shaped NPs have been recognized as a promising drug

carrier [21–23]. However, the atomistic structure of the gold nanostar is still not well-defined,

as it may have different branches and these branches have different lengths and diameters [24].

Here we adopt a simplified model to represent the star-shaped NP. A simple star for which

volume and area is immediately known exactly is one that builds onto a regular convex

polyhedron, a so-called Platonic body. Let us consider here the case where the Platonic

body is a cube, corresponding to a star with 6 arms. Denote with 2Rstar the side length of

the centered cube and with Lstar the heights of the identical paraboloids with their identical

circular bases of radii Rstar built onto any one of the 6 faces. With the volume v1 and surface

area a1 of a single paraboloid,

v1 =
1

2
πR2

starLstar (32)

a1 =
πRstar

6L2
star

[(R2
star + 4L2

star)
3/2 −R3

star] (33)

Thus, the volume and surface area of the regular 6-arms star is

v6 = (2Rstar)
3 + 6v1 (34)

Astar
R,L = 6[a1 + (2R)2 − πR2] (35)

If for example, Lstar is the some multiple of Rstar, say

Lstar = cRstar, (36)

then the above expressions simplify to

v6 = R3
star(8 + 3πc) (37)
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Astar
R,L =

{
24− 6π +

π

c2
[(1 + 4c2)3/2 − 1]

}
R2, c =

L
R (38)

To satisfy the total surface area A = 201 nm2, we set c = 4 and Rstar = 1.365 nm, implying

Lstar = 5.46 nm. The set of these parameters is within the experimental observed gold

nanostars [24]. The PEG volume of such a 6-arms star at coating thickness R is approximately

given by

V star
R,L(R) ≈ V cube

2R (R) + 3πR(2R+R)L (39)

Here we also briefly mention how the above star-shaped NP can be constructed in our

molecular simulations. Given some regular grid with nodes at (x, y, z), a node resides inside

the star if max (|x| , |y| , |z|) ≤ a, or |z| ≥ a and x2 + y2 ≤ a2 [1− (|z| − a) /h], or |x| ≥ a

and y2 + z2 ≤ a2 [1− (|x| − a) /h], or |y| ≥ a and z2 + x2 ≤ a2 [1− (|y| − a) /h]. The

molecular model of PEGylated star-shaped NPs is given in Fig. S14. The typical snapshots

for internalization of PEGylated star-shaped NPs are presented in Figs. S15-S16.

t=0
t=0.05 μs t=0.12 μs t=0.24 μs

t=0.73 μs t=2.43 μs t=3.64 μs t=4.86 μs

Figure S15. Representative DPD simulation snapshots at specified times for the internalization

process of PEGylated star-shaped NP with grafting density σp = 0.8 chains/nm2. The core of

PEGylated NP is colored by yellow. The grafted PEG chains are colored by cyan. The lipid

heads and tails are represented by iceblue beads and silver lines, respectively. The targeting

moieties conjugated on the free ends of grafted chains are colored by blue. Gray beads on the

lipid heads denote the receptor, which have attractive interactions with targeting moieties with

strength εb = 7.65kBT .
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t=0
t=0.05 μs t=0.12 μs t=0.24 μs

t=0.96 μs t=1.46 μs t=1.95 μs t=2.24 μs

Figure S16. Same as Fig. S15 for the star-shaped NP (again for σp = 1.6 chains/nm2).
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