Electronic Supplementary Information for

Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes Hyein Yoo, Ho Seong Jang, Kwangyeol Lee, and Kyoungja Woo*

Figure S1. (a) TEM images of QD and Q with $\lambda_{emit} = 620$ nm, (b) SEM images of SQS prepared without sonication.

Figure S2. (a) TEM images, (b) photographs, and (c) FT-IR, (d) UV-Vis absorption, and (e) PL spectra of the materials (QD, Q, S, SQ, SQS, and SQS^{Ph} with λ_{emit} =611 nm) corresponding to Scheme 1.

Figure S3. EL spectra of YAG:Ce phosphor- and SQS-based white LEDs with different weight ratios for resin : (YAG:Ce) phosphor : $SQ_1S : SQ_2S$.

Figure S4. (a) Integrated PL vs. absorbance and QD-based concentration data for SQ₂S and (b) PL spectra of SQ₂S only solution and the mixture solution of SQ₁S and SQ₂S, whereby the total QD-based concentration is 7.0×10^{-8} M in the SQ₂S only solution and 7.5×10^{-8} M in the mixture solution with SQ₁S : SQ₂S = 1 : 2, under 550 nm excitation. The integrated PL ratio in (b) is 1 : 1.4.

Figure S5. CRI of the white LEDs based on solely commercial YAG:Ce phosphors, with the addition of QD_2 , and with the addition of the mixture of SQ_1S^{Ph} and SQ_2S^{Ph} operated at 60 mA.

Figure S6. (a) Temporal normalized EL intensities and the corresponding temporal evolution of EL spectrum from a YAG:Ce phosphor- and (b) QD_2 -, (c) SQ_2S -, and (d) SQ_2S^{Ph} -based white LED operated at 60 mA 6 months after fabrication.

Table S1. Summary of the performances of various down-convertor- and YAG:Ce phosphorbased white LEDs operated at 60 mA

LED #	Phosphors: YAG:Ce + Red P.	Color Coordinate (x, y)	CRI	LE (lm/W)	CCT (K)
Ι	-	(0.2965, 0.3205)	65.2	78.9	7574
П	QD ₁	(0.3853, 0.3272)	78.1	39.6	3387
Ш	QD ₂	(0.2955, 0.2955)	70.6	37.1	8232
IV	SQ ₁ S	(0.3337, 0.3492)	72.7	42.5	5451
V	SQ ₂ S	(0.3315, 0.3397)	72.0	39.9	5539
VI	$SQ_1S + SQ_2S$	(0.3298, 0.3198)	80.0	44.1	5626
VII	$\mathrm{SQ}_1\mathrm{S}^{\mathrm{Ph}}$	(0.3516, 0.3702)	72.7	50.5	4835
VIII	$\mathrm{SQ}_2\mathrm{S}^{\mathrm{Ph}}$	(0.3431, 0.3697)	71.7	47.8	5124
IX	$SQ_1S^{Ph} + SQ_2S^{Ph}$	(0.3360, 0.3355)	81.8	58.2	5338

*Subscript 1 and 2 denote the emitting wavelengths, 611 nm and 620 nm, respectively.