A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy

Guixin Yang, Ruichan Lv, Fei He, Fengyu Qu*, Shili Gai, Shaokang Du, Zibo Wei

and Piaoping Yang*

Fig. S1 XRD patterns of (A) NaGdF₄:Yb,Er@NaGdF₄:Yb, (B) NaGdF₄:Yb,Er@NaGdF₄:Yb@NaGdF₄:Yb@NaNdF₄:Yb, and (C) NaGdF₄:Yb,Er@NaGdF₄:Yb@ NaNdF₄@SiO₂. The vertical bars show the peak positions and intensities for pure NaGdF₄ (JCPDS No. 27-0699) and NaNdF₄ (JCPDS No. 35-1367) as a reference.

Fig. S2 XRD pattern and TEM image of CuS nanoparticles.

Fig. S3 N_2 adsorption/desorption isotherm and pore size distribution (inset) of assynthesized UCMSNs.

Fig. S4 FT-IR spectra of UCNPs, UCNPs@SiO₂-NH₂ and UCMSNs (A). UV absorption spectrum of UCNPs@SiO₂-NH₂ and UCMSNs (B)

Fig. S5 UC emission spectra of NaGdF₄:Yb,Er, NaGdF₄:Yb,Er@NaGdF₄:Yb, NaGdF₄:Yb,Er@NaGdF₄:Yb@NaNdF₄:Yb excited by 980 nm NIR light (A). UC emission spectra of NaGdF₄:Yb,Er@NaGdF₄:Yb@NaNdF₄:Yb and NaGdF₄:Yb,Er@ NaNdF₄:Yb excited by 808 nm NIR light (B).

Fig. S6 (A) *In vitro* T_1 -weighted MR images of UCMSNs as a function of Gd molar concentration. (B) Relaxation rate $1/T_1$ versus the Gd concentration, (C) T_1 -weighted MR images of a tumor-bearing Balb/c mouse: pre-injection (left) and after injection (right).

Fig. S7 The digital photos of mice under 980 nm (A) and 808 nm NIR (B) laser irradiation.

Fig. S8 *In vitro* Hepal-6 cell viabilities incubated with DOX, UCMSNs, UCMSNs+ DOX at various concentrations with and without 808 nm laser NIR.