Supplementary Information for

Suspended single-walled carbon nanotube fluidic sensors

B. H. Son, Ji-Yong Park, Soonil Lee, and Y. H. Ahn¹

Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea

¹ Corresponding author. Electronic mail: ahny@ajou.ac.kr

S1. Time traces for a suspended SWNT device at a fixed flow rate

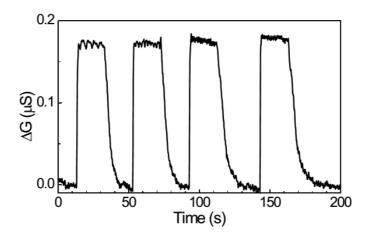
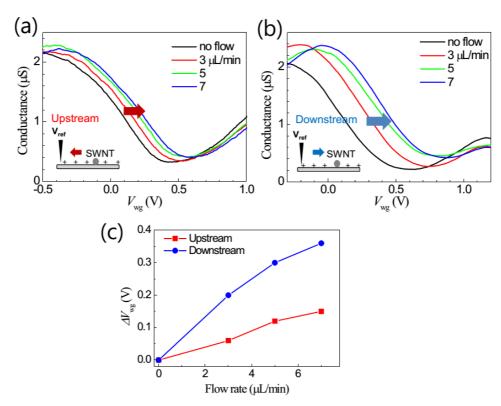



Fig. S1 Conductance were measured for a partially suspended SWNT device at $V_{\rm SD} = 10$ mV and $V_{\rm wg} = 0$ V as a function of time with flow switched on and off at a flow rate of 1 μ L/min (0.42 mm/s). The source and drain electrodes are passivated by SiO₂ layers. In general, the devices with the passivated electrodes exhibit a fast time-response. The rise time (10%–90%) is measured at 0.5 s, whereas the decay time (90%–10%) is relatively large, yielding 7 s.

S2. Upstream vs downstream for suspended SWNT device

Fig. S2 (a) DC conductance versus gate bias voltage at flow rates of 3, 5, and 7 μ L/min for an upstream condition. (b) As in (a) for the downstream condition. (c) Plot of ΔG as a function of flow rate for both upstream (squares) and downstream (circles) conditions.

S3. Gate shift as a function of gate sweep direction

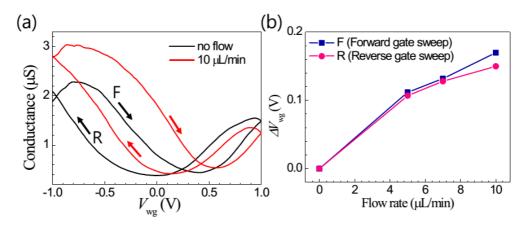


Fig. S3 (a) Conductance as a function of $V_{\rm wg}$ for a partially suspended SWNT device at flow rates 0 μ L/min (black line) and 10 μ L/min (red line). The sweep speed was at 200 mV/s. F and R represent forward and reverse bias sweep directions, respectively. (b) Plot of $\Delta V_{\rm wg}$ as a function of flow rate for forward (squares) and reverse (circles) bias sweep directions.