Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Self-carried Curcumin Nanoparticles for In vitro and In vivo Cancer Therapy with Real-time Monitoring of Drug Release

Jinfeng Zhang^{a,d}[†], Shengliang Li^b[†], Fei-Fei An^a, Juan Liu^b, Shubin Jin^b, Jin-Chao Zhang^e, Paul C. Wang^f, Xiaohong Zhang^{a,c*}, Chun-Sing Lee^{d*}, and Xing-Jie Liang^{b*}

Fig. S1. TEM images of Cur NPs and PEGylated Cur NPs, inset in b is the DLS data of PEGylated Cur NPs (Diameter: 106.9 nm, PDI: 0.271).

Fig. S2. Zeta potentials of (a) as-prepare Cur NPs and (b) PEGylated Cur NPs dispersed in deionized water both displaying negative charge.

Fig. S3. Digital photographs of different samples including free Cur in THF (a), free Cur (b), Cur NPs (c) and PEGylated Cur NPs (d) dispersed in water respectively, which show a good dispersibility and better stability of NP than that of free drug in water.

Fig. S4. Average particle sizes of the as-prepared Cur NPs and the PEGylated NPs dispersed in deionized water measured by DLS. Inset is digital image of the as-prepared Cur NPs (a) and the PEGylated Cur NPs (b) in water dispersions.

Fig. S5. The absorption spectra of Cur of different concentrations; b. The absorbance of Cur molecules at 428 nm (from a mixture of THF and water (v/v = 1:1)) as a function of Cur concentration.

Fig. S6. Confocal microscopy images of CT-26 cells treated with PEGylated Cur NPs. The cells were incubated with PBS containing NPs (5 μ M), and then the images were obtained at each time point (0, 1, and 4 h). Cell images were obtained using excitation at 405 nm and 488nm respectively

Fig. S7. Flow cytometric analyses of CT-26 cells after incubation with PEGylated Cur NPs for different durations.

Fig. S8. Cell viability of free Cur and PEGylated Cur NPs in CT-26 cell line after 48 hours of incubation. Data represent mean values \pm standard deviation, n =5.

Fig. S9. Cell viability of C_{18} PMH-PEG in CT-26 cell line after 24 and 48 hours of incubation. Data represent mean values \pm standard deviation, n =5.

Fig. S10. Bright field of CT-26 cells after incubated with C_{18} PMH-PEG, Free Cur and PEGylated Cur NPs comparing to the control group.

Fig. S11. Hemolysis assay of the PEGylated Cur NPs

Year	Journal	Cur loading capacity (%)	Carrier	Ref.
2015	Our work	78.5	Self-carried NPs	Our work
2009	Chem. Eur. J.	30	Porous silica matrix	1
2011	Carbohydrate Polymers	4.4	Dextran sulphate-chitosan NPs	2
2011	Nanoscale	12.95 ±0.15	Polymeric micelles	3
2011	Biomaterials	11.2	Hybrid nanogels	4
2011	J. Mater. Chem.	35	Mesoporous hollow silica particles	5
2012	Acta Pharmacologica Sinica	0.7	PLGA nanoparticles	6
2012	Carbohydrate Polymers	4.1 ± 0.3	Chitosan/PCL nanoparticle	7
2012	Mol. Pharmaceutics	10	Solid Lipid NPs	8
2013	Mol. Pharmaceutics	0.93 ± 0.02	Polymeric NPs	9
2013	Journal of Controlled Release	7.2 \pm 0.2	Polypeptide-curcumin conjugates	10
2013	Biomacromolecules	8	PLGA nanoparticles	11
2013	J. Mater. Chem. B	8	Polymeric micelles	12
2013	Biomaterials	14.85 ±0.14	Polymeric micelles	13
2013	Adv. Healthcare Mater.	25 -60	Albumin NPs	14
2014	J. Mater. Chem. B	25.7 \ 29	Mesoporous silica NPs	15
2014	Biomaterials	16.1	MPEG-PLA-PAE copolymers	16
2014	J. Mater. Chem. B	0.31	SeNPs	17
2014	ACS Nano	5	N-palmitoyl chitosan NPs	18
2015	J. Mater. Chem. B	0.675	Gold nanoparticles	19
2015	Chem. Commun.	5.7 ± 1.4	Polymeric nanoparticles	20
2015	Adv. Funct. Mater.	2.8	Spherical polymeric nanoconstructs	21

Table S1. Comparison of drug loading content (wt. %) between our self-carried Cur NPs and other

 carrier-based drug delivery system for Cur-based cancer therapy

References

- [1] S. F. Chin, K. S. Iyer, M. Saunders, T. G. S. Pierre, C. Buckley, M. Paskevicius, C. L. Raston, *Chem. Eur. J.* 2009, 15, 5661.
- [2] A. Anitha, V. G. Deepagan, V. V. D. Rani, D. Menon, S. V. Nair, R. Jayakumar, *Carbohydrate Polymers* 2011, 84, 1158.
- [3] M. Gou, K. Men, H. Shi, M. Xiang, J. Zhang, J. Song, J. Long, Y. Wan, F. Luo, X. Zhao, Z. Qian. *Nanoscale* 2011, 3, 1558.

- [4] W. Wu, J. Shen, P. Banerjee, S. Zhou, *Biomaterials* 2011, 32, 598.
- [5] D. Jin, K. W. Park, J. H. Lee, K. Song, J. G. Kim, M. L. Seo, J. H. Jung, J. Mater. Chem. 2011, 21, 3641.
- [6] W. Punfa, S. Yodkeeree, P. Pitchakarn, C. Ampasavate, P. Limtrakul, *Acta Pharmacol. Sin.* 2012, 33, 823.
- [7] J. Liu, L. Xu, C. Liu, D. Zhang, S. Wang, Z. Deng, W. Lou, H. Xu, Q. Bai, J. Ma, Carbohydrate Polymers 2012, 90, 16.
- [8] K. Vandita, B. Shashi, K. G. Santosh, K. I. Pal, Mol. Pharmaceutics 2012, 9, 3411.
- [9] P. Zou, L. Helson, A. Maitra, S. T. Stern, S. E. McNeil, Mol. Pharmaceutics 2013, 10, 1977.
- [10]S. M. Sinclair, J. Bhattacharyya, J. R. McDaniel, D. M. Gooden, R. Gopalaswamy, A. Chilkoti,
 L. A. Setton, J. Control. Release 2013, 171, 38.
- [11] P. Verderio, P. Bonetti, M. Colombo, L. Pandolfi, D. Prosperi, *Biomacromolecules* 2013, 14, 672.
- [12]X. Gao, F. Zheng, G. Guo, X. Liu, R. Fan, Z. Qian, N. Huang, Y. Wei, J. Mater. Chem. B 2013, 1, 5778.
- [13]C. Gong, S. Deng, Q. Wu, M. Xiang, X. Wei, L. Li, X. Gao, B. Wang, L. Sun, Y. Chen, Y. Li, L. Liu, Z. Qian, Y. Wei, *Biomaterials* 2013, 34, 1413.
- [14] M. Cui, D. J. Naczynski, M. Zevon, C. K. Griffith, L. Sheihet, I. P. Fuentes, S. Chen, C. M. Roth, P. V. Moghe, *Adv. Healthcare Mater.* 2013, 2, 1236.
- [15]C. Xu, Y. Niu, A. Popat, S. Jambhrunkar, S. Karmakar, C. Yu, J. Mater. Chem. B, 2014, 2, 253.
- [16] Y. Yu, X. Zhang, L. Qiu, *Biomaterials* 2014, 35, 3467.
- [17] B. Yu, X. Li, W. Zheng, Y. Feng, Y. S. Wong, T. Chen, J. Mater. Chem. B 2014, 2, 5409.
- [18]H. L. Pu, W. L. Chiang, B. Maiti, Z. X. Liao, Y. C. Ho, M. S. Shim, E. Y. Chuang, Y. Xia, H. W. Sung. ACS nano 2014, 8, 1213.
- [19] S. Dey, K. Sreenivasan. J. Mater. Chem. B 2015, 3, 824.
- [20]H. Wang, S. Zhao, P. Agarwal, J. Dumbleton, J. Yu, X. Lu, X. He, *Chem. Commun.* 2015, 51, 7733.
- [21]C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi, Adv. Funct. Mater. 2015, 25, 3371.