Supplementary Information

$Ag/g-C_3N_4$ catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radicals approach

Yongsheng Fu, Tinghuang, Lili Zhang and Xin Wang

Table 1S. MO photodegradation performances in the presence of $Ag/g-C_3N_4$ or $Ag/g-C_3N_4/TiO_2$ nanocomposites.

Samples	catalyst amount (mg)	MO volume (mL)	initial MO concentration (mg L ⁻¹)	particle size of the Ag (nm)	MO degradation rate after 120 min (%)	reference
Ag/g-C ₃ N ₄	150	50	10	10-20	79	18
Ag/g-C ₃ N ₄	100	100	10	10	98	28
Ag/g-C ₃ N ₄ -4	10	50	10	5.6	86	This work

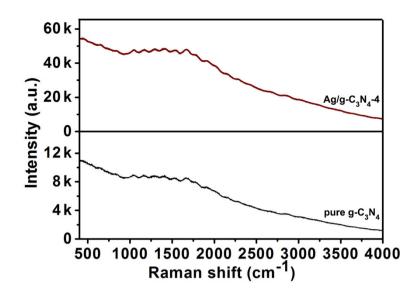


Figure 1S. Raman spectra of pure g-C₃N₄ and ACN-4 samples.

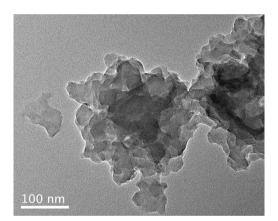
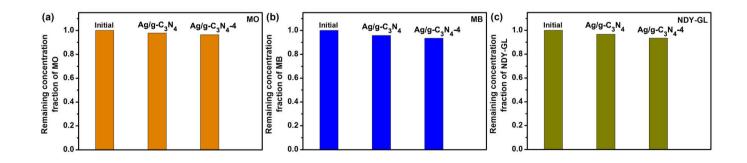



Figure 2S. TEM image of pure g-C₃N₄ catalyst.

Figure 3S. Bar plot showing the remaining MO, MB and NDY-GL in solution after reaching the adsorption-desorption equilibrium in the dark for 60 min with stirring.

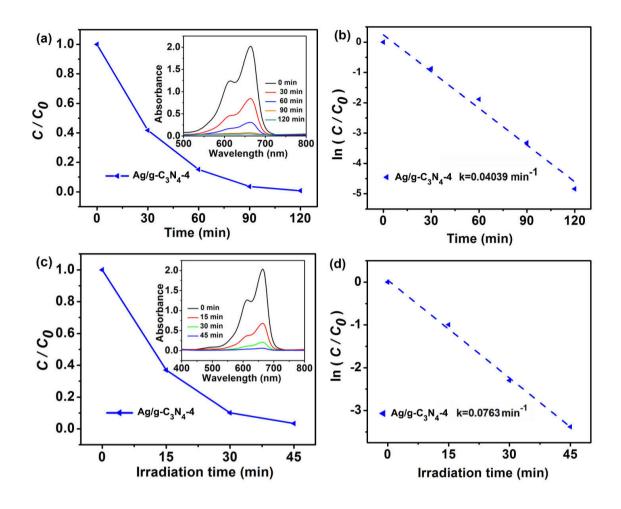


Figure 4S. Catalytic degradation of MB over $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (a) and under visible light irradiation (c); Plot of $ln(c/c_0)$ against reaction time for Catalytic degradation of MB over $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (b) and under visible light irradiation (d). The insets are time-dependent UV-vis absorption spectra for the catalytic degradation of MB over the $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (a) and under visible light irradiation (c).

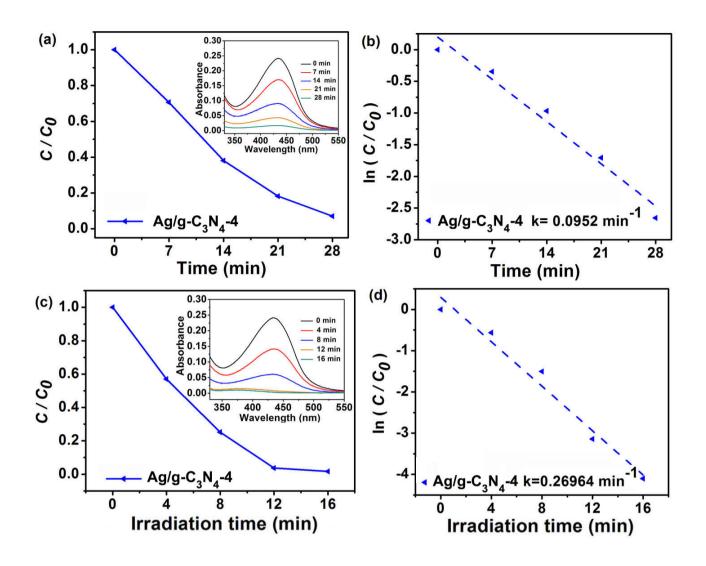


Figure 5S. Catalytic degradation of NDY-GL over $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (a) and under visible light irradiation (c); Plot of $\ln(c/c_0)$ against reaction time for Catalytic degradation of NDY-GL over $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (b) and under visible light irradiation (d). The insets are time-dependent UV-vis absorption spectra for the catalytic degradation of NDY-GL over the $Ag/g-C_3N_4-4$ catalyst in the presence of BH_4^- in the dark (a) and under visible light irradiation (c).

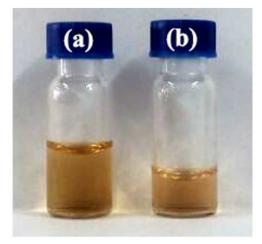


Figure 6S. (a) [FeNO]²⁺ standard solution and (b) The last step reaction solution of color reaction.

A typical experiment for the color reaction between the ferrous irons (Fe²⁺) and nitric oxide (NO) is as follows: 2 mg of the as-obtained Ag/g-C₃N₄-4 catalyst was added into 5.0 mL of 0.1 g mL⁻¹ NaBH₄ aqueous solution with 0.5 M NaOH and stirred for 10 min. Then 0.5 mL of phosphate buffer solution (PBS, pH = 7.8) and 2.0 mL of hydroxylamine hydrochloride aqueous solution (10 M) were added to 3.0 mL of above supernatant with stirring for 10 min at the room temperature. After that, 1 mL of above reaction solution was added to the 2 mL of Ag₂SO₄ aqueous solution (0.02 M), then the resulting mixture was stirred for 2 min and centrifuged to remove the precipitation. Finally, a small amount of FeSO₄ was added into the above supernatant and allowed to dissolve, then 0.5 mL HAc (2 M) was introduced. The mechanisms of color reaction between the ferrous irons (Fe²⁺) and nitric oxide (NO) are as the following steps:

$$BH_4^- + xOH^- \longrightarrow B(OH)_4^- + (x-4)H_2O + (4-x/2)H_2 + xe^-$$
 (1)

$$e^- + O_2 \longrightarrow O_2^{--}$$
 (2)

$$O_2^{-} + NH_2OH + H^+ \longrightarrow NO_2^{-} + H_2O_2 + H_2O$$
 (3)

$$NO_2^- + Fe^{2+} + HAc \longrightarrow Fe^{3+} + NO(g) + Ac^-$$
 (4)

$$Fe^{2+} + NO \longrightarrow |FeNO|^{2+}$$
(5)

In aqueous alkaline medium, BH_4^- can be oxidized directly on the surface of Ag/g-C₃N₄-4 catalyst with electrons being released (Eq. (2)), then electrons can quickly activate the adsorbed oxygen to produce O_2^- radicals (Eq. (2)). As a strong oxidant, O_2^- radicals could oxidize hydroxylamine (NH₂OH) to NO₂⁻ (Eq.

(3)), which can be reduced to generate NO (Eq. (4)). Finally, the Fe²⁺ and NO react readily to produce $[FeNO]^{2+}$ complexion (Eq. (5)). It can be clearly seen that the color of reaction solution (Eq. (5)) appears brown (Fig 6S(b)), which is almost the same as that of $[FeNO]^{2+}$ standard solution (Fig 6S(a)). Therefore, we can conclude that Ag/g-C₃N₄ catalyst can catalyze oxidation of BH₄⁻ to release electrons which can activate the adsorbed oxygen to O₂⁻⁻ radicals.

References

1S. L. Ge, C. Han, J. Liu and Y. Li, Appl. Catal. A: Gen., 2011, 409-410, 215-222.

2S. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo and M. Huo, *Appl. Catal. B: Environ.*, 2013, **142-143**, 828-837.