Supporting Information

High performance of PbSe/PbS core/shell

quantum dot heterojunction solar cells: Short

circuit current enhancement without loss of open

circuit voltage by shell thickness control

Hyekyoung Choi,^{a,b} Jung Hoon Song, ^{a,d} Jihoon Jang,^a Xuan Dung Mai,^{a,c}

Sungwoo Kim^a, and Sohee Jeong^{a,b*}

*Address correspondence to

sjeong@kimm.re.kr

^{a.} Nano-Mechanical Systems Research Division, Korea institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea.

^{b.} Korea University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.

^{*c.*} Department of Chemistry, Hanoi pedagogical university No 2, Vinh Phuc, Vietnam.

^{d.} Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 306-701, Republic of Korea.

Scheme S1. Synthesis scheme for PbSe/PbS core/shell CQDs of (a) conventional method, (b)

Figure S1. Absorption spectra of PbSe core and PbSe/PbS core/shell with 1.3-nm-thick PbS shell depending on elapsed time.

Table S1. Performance parameters of PbSe/PbS core/shell CQD solar cells depending on PbSshell thickness under AM 1.5G illumination. Results are averaged with standard deviationacross over 12 cells.

	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	η (%)
Core	0.46±0.02	6.4±0.43	30±0.4	0.9±0.8
0.5 nm PbS shell	0.46±0.01	9.3±0.03	40±1.2	1.7±0.06
0.9 nm PbS shell	0.46±0.01	11.8±0.8	49±3.8	3.0±0.43
1.3 nm PbS shell	0.43±0.01	12.3±1.2	37±1.2	1.5±0.20

Figure S2. Cross-sectional SEM images of PbSe/PbS core/shell with 0 to 1.3 nm PbS shell thickness. The scale bar represents 500 nm.

Figure S3. Cross-sectional SEM images of PbSe/PbS core/shell with 0.9-nm-thick PbS shell after further optimization. The scale bar represents 500 nm.

Figure S4. Simulated and experimented changes in the J_{SC} and V_{OC} in solar cell as a function of CQD band gap.

Figure S5. j-v curves of solar cells with PbSe core and PbSe/PbS core/shell-0.5nm after halide treatment.

Figure S6. Histogram of power conversion efficiencies for 16 separate devices under AM 1.5G illumination conditions of the PbSe/PbS core/shell CQD heterojunction solar cells with 0.9-nm-thick PbS shell.