Electronic Supplementary Information

Facile synthesis of 3D few-layer MoS₂ coated TiO₂ nanosheet core-shell

nanostructures for stable and high-performance lithium-ion batteries

Biao Chen,^a Naiqin Zhao,^{*a, b} Lichao Guo,^a Fang He,^a Chunsheng Shi,^a Chunnian He,^{a,b} Jiajun Li^a and Enzuo Liu^{*a, b}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P.R. China. E-mail: ezliu@tju.edu.cn, nqzhao@tju.edu.cn

^b Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, P.R. China

Fig. S1 (a) TEM image and (b) corresponding SAED pattern of F-TiO₂, (c, d) TEM images of 3D FL-MoS₂@TiO₂ before thermal-treated, (e, f) High-resolution TEM images of 3D FL-MoS₂@TiO₂.

Fig. S2 (a-c) TEM images of hydrothermal products of the complex of $F-TiO_2/glucose$ without $Na_2MoO_4-CN_2H_4S$.

Fig. S3 (a) SEM image and (b-d) TEM images of hydrothermal products of the mixture of $Na_2MoO_4-CN_2H_4S/glucose$ without F-TiO₂.

Fig. S4 (a) SEM image and (b, c) TEM images of hydrothermal products of the hybrid of $Na_2MoO_4-CN_2H_4S/F-TiO_2$ without glucose.

Fig. S5 (a-c) SEM images of MoS_2/TiO_2 composite before thermal-treated, (d-f) TEM images of MoS_2/TiO_2 composite after thermal-treated.

Fig. S6 (a) TEM image and (b) EDX spectra of a typical 3D FL-MoS₂@TiO₂. (c) STEM image of a detailed 3D FL-MoS₂@TiO₂, (d-g) corresponding EDX element mapping images of Ti, O, Mo, and S, respectively.

Fig. S7 (a) XPS survey spectra of the 3D FL-MoS₂@TiO₂ before and after calcination. (b) High-resolution XPS spectra of the Ti 2p region of F-TiO₂, MoS_2/TiO_2 composite, 3D FL-MoS₂@TiO₂ before and after calcination.

Fig. S8 Nyquist plots of 3D FL-MoS₂@TiO₂ and MoS₂/TiO₂ composite at the state of before cycling over the frequency range from 100 KHz to 100 mHz. The inset is the corresponding magnified high frequency region.

Fig. S9 (a-c) TEM images of the 3D FL-MoS₂@TiO₂ nanocomposite after the 150 electrochemical cycles for the rate cycle performance test in Fig. 6d.

Table S1 Detailed information of rate cycle performance of MoS_2 , MoS_2/TiO_2 composite and 3D FL- $MoS_2@TiO_2$ electrodes corresponding to Fig. 6d.

-					
Range of	Charge/discharge rate	Average charge	Average charge capacity	Average charge capacity of	
cycle	(A/g)	capacity of MoS ₂	of MoS ₂ /TiO ₂ composite	3D FL-MoS ₂ @TiO ₂	
1-10	0.1	732.8 683.2		685.2	
11-20	0.2	232.0	633.5	666.4	
21-30	0.4	97.7	436.7	612.5	
31-40	0.6	56.6	329.5	591.8	
41-50	0.8	37.6	280.7	562.1	
51-60	1.0	30.5	251.9	550.9	
61-70	2.0	18.3	176.6	469.7	
71-80	1.0	36.8	254.2	543.4	
81	0.1	347.0	542.1	724.2	
150	0.1	162.6	425.6	739.2	

Table S2 Recently reported LIBs systems based on TiO_2 and MoS_2 .

Marerials	Voltage	Charge capacity (mA h/g) at	Rate capacity	Current
	range (V)	Current Density (mA/g) (capacity		Density(mA/g)
		retention after cycle-index)		
3D FL-MoS ₂ @TiO ₂	0.005-3.0	713.7 at 100	684.2	100
[this work]		(95.9% after 100 cycles)	550.9	1000
			469.7	2000
			724.2	100
3D assembled MoS ₂	0.01-3.0	839 at 100 (71.6% after 50 cycles)	600	1000
[ref. 21]		(discharge)	500	5000
			(discharge)	
MoS ₂ nanosheets	0.01-3.0	750 at 50 (63% after 50 cycles)	820	50
[ref. 22]		(discharge)	500	1000
			700	100
			(discharge)	
MoS ₂ microspheres	0.01-3.0	585 at 100 (73% after 70 cycles)	726	200
[ref. 23]			353	1000
			700	100
Ordered mesoporous MoS ₂	0.01-3.0	645 at 50 (92% after 20 cycles)	640	50
[ref. 24]			220	1000
			580	50
MoS ₂ nanoflakes	0.05-3.0	705.8 at 50 (70% after 40 cycles)		
[ref. 25]		(discharge)		
Anatase TiO ₂	1.0-3.0	136 at 850 (80.5% after 100 cycles)	192	170
nanosheets			95	3400
[ref. 47]			169	170
Anatase TiO ₂ nanosheet	1.0-3.0	120.2 at 850 (81.7% after 200		
[ref. 49]		cycles)		
TiO ₂ nanotube	1.0-3.0	227 at 83.75 (100% after 100	267	33.5
[ref. 58]		cycles)	176	3350
		(discharge)	260	33.5
			(discharge)	
MoS_2 nanosheet@TiO_2	0.005-3.0	472 at 100 (68.1% after 100)	713	100
nanotube		(discharge)	461	1000
[ref. 42]			611	100
			(discharge)	
few-layered MoS ₂ @ TiO ₂	0.01-3.0	710 at 100 (91.5% after 100)	717	100
nanobelt			417	1000
[ref. 43]			710	100
MoS ₂ nanosheet@TiO ₂	0.01-3.0	544 at 100 (75.1% after 100)	724	100
nanowire		(discharge)	414	1000
[ref. 44]			563	100
			(discharge)	

Mesoporous MoS ₂ -TiO ₂	1.0-3.0	124 at 6000 (75.2% after 1000)	188	1000
nanofibers		(discharge)	177	2000
[ref. 45]			120	40000
			187	1000
			(discharge)	
TiO ₂ microspheres embedded	0.01-3.0	714 at 100 (86.2% after 200)	962	100
with MoS ₂		(discharge)	450	1000
nanosheets			805	100
[ref. 46]			(discharge)	
C@MoS ₂ microspheres	0.05-3.0	750 at 100 (~74% after 50)	~780	100
[ref. 26]		(discharge)	500	1000
			750	100
			(discharge)	
MoS ₂ /polyaniline nanowires	0.01-3.0	952.6 at 100 (89.6% after 50)	1006.4	200
[ref. 27]			320	1000
			900	200
MoS _x /CNT	0.01-3.0		1119	50
Nanocomposites			358	1000
[ref. 29]			197	2000
			1087	50
			(discharge)	
CNT@MoS ₂	0.01-3.0	698 at 100 (48.7% after 60)	653	200
[ref. 30]		(discharge)	389	1000
			(discharge)	
MoS ₂ -MWCNT hybrids	0.01-3.0	1090 at 100 (89.8% after 30)	~870	200
[ref. 31]			~550	500
			~1000	100