Graphene Quantum Dot-based FRET System for Nuclear-targeted and Real-time Monitoring of Drug Delivery

Hui Chen, Zhuyuan Wang*, Shenfei Zong, Peng Chen, Dan Zhu, Lei Wu, Yiping

Cui*

Advanced Photonics Center, Southeast University, 2# Sipailou, Nanjing 210096,

China.

cyp@seu.edu.cn, wangzy@seu.edu.cn

Figure.S1. CLSM images of inhibitor-pretreated HeLa cells incubated with GQDs-PEG/TAT (A) and GQDs-PEG (B) respectively. HeLa cells without pretreatment were examined as controls.

Figure.S2. Quantitative detection of the nuclear and cytosol DOX of HeLa cells after being incubated with DOX-GO-PEG/TAT and DOX-GQDs-PEG/TAT for different time.

Figure S3. TGA graph for GQDs (control), GQDs-PEG, GQDs-PEG/TAT composites, $\rm NH_2$ -PEG- $\rm NH_2$ and TAT.

Composite	NH ₂ -PEG-NH ₂	TAT content	GQDs content
	content (w/w)%	(w/w) %	(w/w) %
GQDs-PEG/TAT	13.8	20	66.2

Table S1. The coupling efficiency of NH₂-PEG-NH₂ and TAT.

Figure S4. Hydrodynamic size distribution of GQDs, GQDs-PEG and GQDs-PEG/TAT.

Figure S5. Zeta potential and DLS size measurement of GQDs, GQDs-PEG and GQDs-PEG/TAT.

Figure S6. Fluorescence spectra of GQDs, GQDs-PEG and GQDs-PEG/TAT.

Figure S7. (A) Drug release profile of DOX from GQDs-based FRET carriers. (B) Correlation between the percentage of DOX released DOX percentage and change in the FRET signal (plotted as 1/R) at varied different time points (Inset: Change in FRET signal R at different time points).

DOX loading was carried out by mixing 100µl of 10mg/ml DOX (final concentration 0.2mg/ml) with 5 mL 0.1mg/mL GQDs-PEG/TAT for 24 hours at room temperature. Unloaded DOX was removed by dialysis.

The absorbance A_1 at 488nm of the as-synthesized DOX-GQDs-PEG/TAT and absorbance A_2 at 488nm of no DOX loaded GQDs-PEG/TAT were measured, and A_1 - A_2 is corresponding to the absorbance of loaded DOX. Then, the amount of loaded DOX was calculated according to a calibration curve recorded with known concentrations. The drug loading efficiency was calculated by the equation, % LE of

$$DOX = \frac{DOX_l}{DOX_i} \times 100$$

 DOX_i is the initial amount (mg) of DOX, DOX_l is the amount of loaded DOX.

Loading Condition	Inatial DOX mg/ml	Loaded DOX mg/ml	%LE of DOX
Buffered solution(pH 7.4)	0.2	0.139	69.5

Table S2. Loading efficiency of DOX.

Figure S8. Confocal laser scanning microscopy (CLSM) images and line scanning profiles of fluorescence intensity of HeLa cells incubated with (A) GQDs-PEG and (B) GQDs-PEG/TAT for 4h. The Green fluorescence is from GQDs. The blue fluorescence is from NucRed Live 647 used to stain the nuclei.