Electronic Supplementary information (ESI)

Epitaxial 1D Electron Transport Layer for High Performance Perovskite Solar Cells

Gill Sang Han,^{*a,b} Hyun Suk Chung*,^{*a*} Dong Hoe Kim,^{*c*} Byeong Jo Kim,^{*a*} Jin Wook Lee,^{*d*} Nam-Gyu Park,^{*d*} In Sun Cho,^{*e*} Jung-Kun Lee,^{*b*} Sangwook Lee,^{*f*}* and Hyun Suk Jung^{*a*}*</sup>

^aSchool of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Korea

^bDepartment of Mechanical Engineering & Materials Science, University of Pittsburgh, PA15261, USA

^cChemical and Materials Science Center, National Renewable Energy Laboratory, CO 80401 USA.

^dSchool of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic Korea.

^eDepartment of Materials Science and Engineering, Ajou University, Suwon 443-749, Korea

^fDepartment of Material Science and Engineering, University of California at Berkeley, CA94720, USA.

*Corresponding Author:

Sangwook Lee

Email: wook2@berkeley.edu

Hyun Suk Jung

Tel:+82-31-290-7403; Fax:+82-31-290-7410; Email: hsjung1@skku.edu

Figure S1. Histograms of the parameters of the TiO₂ NP based mp-ETL cells (48 devices) compared to TiO₂/SnO₂ NWs based 1D-ETL cells (34 devices). (a) Power conversion efficiency PCE, (b) short-circuit current density J_{sc} , (c) open-circuit voltage V_{oc} , and (d) fill factor *FF*.

Figure S2. UV-vis absorption spectrum of the TiO_2 NP based mp-ETL cell and TiO_2/SnO_2 NWs based 1D-ETL cell.

Figure S3. Cross-sectional FE-SEM image of (a) the TiO_2 NP based mp-ETL cell, and (b) TiO_2/SnO_2 NWs based 1D-ETL cell.

Figure S4. *J-V* curve of bare SnO₂ NW based ETL PSC