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1 I. Calculation of bandgap energy of Ti-based oxide photocatalysts

2 In order to quantify the effect of RE3+ ions modification on the bandgap of nanorods, 

3 the bandgap energy was calculated by Kubelka–Munk theory. According to the 

4 hypothesis of plural scattering, diffuse reflection spectrum can be transformed into a plot 

5 of the square root of F(R)ћν versus the energy of irradiation light. The Kubelka–Munk 

6 function1 is shown as in Eq. (1).

7                                                   Eq. (1)
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8 Here, R is the measured reflectance (R = Rsample/Rreference). The use of F(R) as the 

9 equivalent of absorbance relies on the assumption that the scattering coefficients are 

10 consistent throughout the reference samples2. From Yeong Kim’s results, the optical 

11 absorption behavior of lamellar titanate is consistent with an indirect gap semiconductor3. 

12 So, bandgap can be estimated from the plot of the square root of F(R)ћν versus photon 

13 energy (as shown in Eq. (2)). Here, ћν is photon energy, and Eg is bandgap energy of 

14 semiconductor.

15                                             Eq. (2))()( gEvcvRF  hh
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1 II. Calculation of apparent reaction rate constants

2 Decrement of MO concentration (C) during the treatment time (t) was described by the 

3 first order kinetics, as shown in Eq. (3).

4                                                  Eq. (3)
𝑟=‒

𝑑(𝐶)
𝑑𝑡

= 𝑘𝐶𝑛

5 where r, k and n represent the rate of photocatalytic degradion of dye, the apparent 

6 reaction rate constant, and reaction order, respectively. To simplify the heterogeneous 

7 catalytic process, the initial concentration of the methyl orange substrate C0 was kept 

8 constant. The apparent first order reaction rate constant k (s-1) was obtained by fitting the 

9 experimental data from Eq. (4). 

10                                                    Eq. (4)
‒ ln ( 𝐶𝐶0) = 𝑘𝑡

11   The k values were determined by the slope of the linear curve (plotting –ln(C/C0) 

12 versus time). Consequently, reaction half-times t1/2 were calculated using Eq. (5).

13                                                        Eq. (5)
𝑡1/2 =

𝑙𝑛2
𝑘
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1 III. Supplementary figures

2

3 Fig. S1 XRD patterns (a) and Raman scattering (b) of as-prepared protonated titanate 

4 nanotubes.
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1

2 Fig. S2 EDS of Ce-TiO2 nanorods.
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3 Fig. S3. Up-conversion fluorescence emission of Er3+ and Yb3+ co-doped TiO2 nanorods 

4 under excitation of 980 nm.
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1

2 Fig. S4 UV-Vis reflectance spectra of TiO2 nanorods and RE ions doped TiO2 

3 photocatalysts. (a) undoped TiO2 nanorods, (b) La-TiO2 nanorods, (c) Ce-TiO2 nanorods, 

4 (d) Pr-TiO2 nanorods, (e) Sm-TiO2 nanorods, (f) Eu-TiO2 nanorods, (g) Tb-TiO2 

5 nanorods, and (h) Er-TiO2 nanorods.
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1

2 Fig. S5 Photodegradation of MO in aqueous solution. Initial concentration of dye was 20 

3 mg L-1 and concentration of catalysts was 1 g L-1. Data symbols stand for: 

4 photodegradation of MO without catalysts, photocatalytic degradation of MO with 

5 catalyst P25 TiO2, TiO2 nanorods, La doped TiO2 nanorods, Ce doped TiO2 

6 nanorods, Pr doped TiO2 nanorods, Sm doped TiO2 nanorods, Eu doped TiO2 

7 nanorods, Tb doped TiO2 nanorods, and Er doped TiO2 nanorods.
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2 Fig. S6 Molecular structure of (a) micromolecular –N=N– dye methyl orange, (b) 

3 macromolecular lignin with phenol group and ether bond, (c) three types of lignin 

4 monomers.
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2 Fig. S7 UV-Vis absorption spectra of lignin solution before irradiation and after 3h UV 

3 irradiation. Reaction condition: 100mL lignin aqueous solution with a concentration of 

4 250 mg L-1 was illuminated under 100 W near-ultraviolet light (UVA) without catalyst.
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1 IV. Supplementary table

2 Table S1 Assigned IR peaks of lignin

Wavenumber (cm-1) Assigned chemical structure

1596 C=C stretching in aromatic lignin4

1504 C=C vibrations of the aromatic lignin4, 7-9

1464
C-H deformations in methyl, methylene and 

methoxyl groups in lignin4, 5

1425
C-H deformations in methyl, methylene and 

methoxyl groups in lignin4, 5

1335 C-O vibration in syringyl derivatives4

1328
Aromatic ring vibrations of syringl and 

guaiacyl10

1262 C-O stretching in lignin4

1225 C-O stretching9
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