Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Nanoparticle Cluster Gas Sensor: Pt Activated SnO₂ Nanoparticle for NH₃ Detection with Ultrahigh Sensitivity

Xu Liu, ^{*a*} Nan Chen, ^{*a*} Bingqian Han, ^{*a*} Xuechun Xiao, ^{*a,b*} Gang Chen^{*a,b*}, Igor Djerdj^{*c*} and Yude Wang^{**a,b*}

^aSchool of Physics Science and Technology, Yunnan University, 650091 Kunming, People's Republic of China.

^bYunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People's Republic of China. Fax: +8687165153832; Tel: +8687165031124; E-mail: ydwang@ynu.edu.cn.

^cRuđerBošković Institute, Bijenička 54, 10000 Zagreb, Croatia. Fax: +38514680114; Tel: +38514680113; E-mail: igor.djerdj@irb.hr.

Space group	<i>P</i> 4 ₂ / <i>mnm</i> (136)
Lattice parameters	
<i>a</i> (Å)	4.7334
<i>b</i> (Å)	4.7334
<i>c</i> (Å)	3.1600
Unit Cell Volume (Å ³)	70.800
Sn	
x	0
y	0
Z	0
О	
x	0.2827
V	0.2827
Z	0
Average crystallite size (nm)	3.0
Average maximum strain (10^{-3})	5.5365
R _{WP} (%)	14.7
$R_{\rm P}$ (%)	11.0

 Table S1. Structural data and refinement parameters for SnO2 nanoparticle clusters calculated

 by Rietveld refinement of the experimental XRD powder pattern.

Fig. S1 (a) A photograph of the WS-30 A testing system, (b) the basic testing principle (where V_h is the heating voltage, R_L is a constant load resistance, V_{out} is the sensor export voltage, and V_c is the working voltage (5V).), (c) the schematic structure of the gas sensor,

and (d) the picture of a completed gas sensor.

Fig. S2 TEM image of unbroken (a) Pt activated and (b) pure SnO₂ nanoparticle clusters.

Fig. S3 (a) XPS survey and (b) high-resolution spectra of Sn3d for Pt activated SnO₂ nanoparticle clusters.

Fig. S4 Magnified dynamic response-recovery curve of as-fabricated sensor based on Pt activated SnO_2 nanoparticle clusters toward 1000 ppm ammonia at 115 °C

Fig. S5 Dynamic response-recovery curve of as-fabricated sensor based on Pt activated SnO₂ nanoparticle clusters toward 10 ppm ammonia at 115 °C

Fig. S6 Dynamic response-recovery curves of as-fabricated sensor based on Pt-SnO₂ nanoparticles toward 100 ppm (a) acetone, (b) ethanol, (c) formaldehyde and (d) isopropanol at 115 °C.