Electronic Supplementary Information (ESI) for

Multidimensional MnO₂ Nanohair-Decorated Hybrid Multichannel Carbon Nanofiber as an Electrode Material for High-Performance Supercapacitors †

Jaemoon Jun, Jun Seop Lee, Dong Hoon Shin, Sung Gun Kim and Jyongsik Jang*

School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea). Fax: +82-2-888-7295; Tel: 82-2-880-8348; e-mail: jsjang@plaza.snu.ac.kr

Figure S1. Optical images of the multichannel carbon nanofiber (MCNF) contained in a KMnO₄ aqueous solution before (left) and after (right) the redox reaction (yellow inset: MCNF; green inset: MnO₂ nanohair-decorated MCNF (Mn_MCNF).

Figure S2. TGA analyses of MnO₂ decorated CNFs with and without inner channel (blue: Mn_P CNF_60 ; green: Mn_MCNF_60).

Figure S3. Magnified curves of the pore size distribution curves (black: MCNF; red: Mn_MCNF_5; blue: Mn_MCNF_5; green: Mn_MCNF_60).

Figure S4. Transmission electron microscopy (TEM) image of (a) a carbon nanofiber (CNF) and (b) multichannel carbon nanofiber (MCNF).

Figure S5. Cyclic Voltammetry (CV) curves (scan rate : 10 mV s⁻¹)of (a)different carbon nanofibers (black: MCNF; pink: pristine CNF) and (b)pristine CNF and Mn_PCNF samples .

Figure S6. TEM image of Mn_PCNF_60.

Control experiments were conducted using pristine carbon nanofibers (PCNF) and pristine CNFs with MnO₂. PCNF were placed in a teflon container custom-designed for use during the redox reaction. Then 10 mM of a KMnO₄ aqueous solution was introduced and sonicated for 20 min. The mixture solution was then stirred vigorously for different time (5, 30 and 60 min) at 80°C. The final products were dried in a vacuum oven for 12 h at 60°C. The electrochemcial properties of the PCNF with MnO₂ (Mn_PCNF_5, Mn_PCNF_30 and Mn_PCNF_60, corresponding to a reaction time of 5, 30, and 60 min) were studied for a three-electrode system. The Cyclic Voltammetry (CV) curves of the

Mn_PCNFs exhibited a relatively large area compared to PCNF without MnO₂ due to the combination of the faradaic reaction from MnO₂(**Figure S5**). Additionally, the area under the CV curve increased with reaction time duration. We confirmed that MnO₂ well-decorated on the surface of PCNF using TEM (**Figure S6**). However, the CV curves of the Mn_PCNF-60 displayed small area compared to Mn MCNF 60. These results means that inner pores take a role of ion pathway.

Figure S7. TEM image of Mn_MCNF_60 after cycling test..

Figure S8. The structure of flexible supercapaticor device was made up of two symmetrical Mn_MCNF_60 electrodes.

Figure S9. Digital photographs of Mn_MPCNF_60 based two electrodes supercapacitor with various deformation

Figure S10. (a) CV curves (scan rate : 10 mV s^{-1}) and (b) galvanostatic charge-discharge curves (current density : 2 A g^{-1}) with various deformation (cobalt blue : plat; green : bending

We fabricated symmetrical two electrode flexible supercapacitor device, to measure the performance of the Mn_MCNF_60. Firstly, the Mixture of Mn_MCNF_60 paste was uniformly coated onto a polyethylene terephthalate (PET) film (1 x 5 cm) surface. To apply the flexible supercapacitor device, a polyvinyl alcohol (PVA)-gel electrolyte was prepared by mixing PVA with 1M sodium sulfate (Na₂SO₄) in D.I. water at 80 °C with vigorously stirring. Then, PVA-gel electrolyte was coated onto the identical electrodes surface using spin coater. These two identical electrodes were stacked at a pressure of 10 MPA for 10min using a sheet presser. The flexible supercapacitor device displays the stability with various bending and twisting angles (**Figure S9**). The electrochemical properties of supercapacitor device demonstrated that the flexibility of the device. The CV curves with various deformations exhibited similar rectangular shape at a scanrate of 10 mV s⁻¹ (**Figure S10**). Additionally, GCD curves

at a specific current of 2 A g^{-1} also displayed symmetrical linear form. The specific capacitance calculated from galvanostatic charge-discharge curves at a 2.0 A g^{-1} current denstiy was 207 F g^{-1}

	Specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
MCNF	983	0.85
Mn_MCNF_5	1012	0.87
Mn_MCNF_30	1083	0.95
Mn_MCNF_60	1207	1.04

Table S1. Physiochemical properties of the multichannel carbon nanofiber (MCNF) and MnO_2 nanohair-decorated MCNFs (Mn_MCNFs).