Electronic Supplementary Information

Synthesis and Characterization of Barium Silicide (BaSi₂) Nanowire Arrays for Potential Solar Applications

Ankit Pokhrel, Leith Samad, Fei Meng and Song Jin*

Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States

*E-mail: jin@chem.wisc.edu

Fig. S1 TEM micrographs of a representative BaSi₂/Si NW heterostructure. (a) Low-resolution TEM micrograph of the NW heterostructure clearly showing two distinct phases (Si is atomically

lighter than $BaSi_2$ and hence gives the lighter phase contrast among the two materials), (b) lattice-resolved HRTEM micrograph of the selected area in a) along the [331] zone axis of $BaSi_2$ and (c) the corresponding two-dimensional FFT.

Fig. S2 PXRD of the as-converted NWs formed at 1000 °C for 30 min and 2 h in comparison with the reference pattern for $BaSi_2$ (PDF# 71-2327), demonstrating the presence of minor Ba_3Si_4 and BaSi phases indicated by * and +, respectively. These impurities were present only in conversion reactions performed for 30 min.

Fig. S3 The current density–voltage (J-V) curves of the PEC electrode fabricated from BaSi₂ NW arrays in a non-aqueous electrolyte of ethylene glycol and 0.5 M KI/0.05 M I₂ redox couple. (a) J-V curve demonstrating weak diode behavior of the BaSi₂ NW array. (b) Zoomed-in view of the photoactive region demonstrating n-type behavior of the BaSi₂ NW arrays at positive applied voltages.