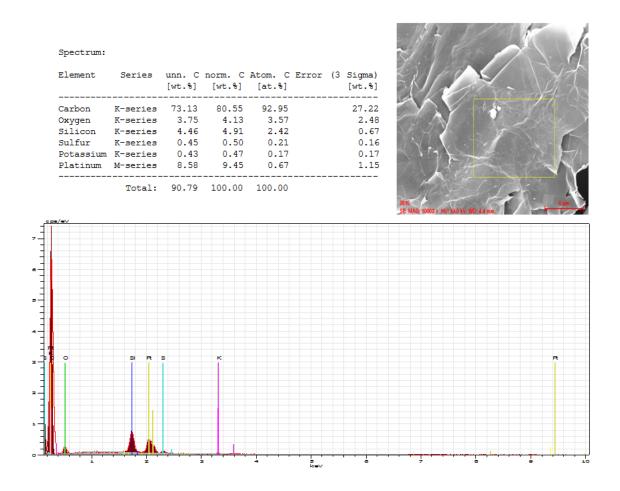
Supporting Informations

Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in-situ encapsulation


Chia-Hsuan Chen, Shiou-Wen Yang, Min-Chiang Chuang, Wei-Yen Woon and Ching-Yuan Su*

Number	H₂SO₄ (g/100ml)	Melamine (mg/10 ml)	Siring (RPM)	Current(A)	Exfoliated Graphene (g)
1	2.4	0	150	3	*
2	4.8	0	150	3	0.437
3	6.5	0	150	3	0.414
4	2.4	20	150	3	*
5	4.8	20	150	3	0.597
6	6.5	20	150	3	0.424
7	6.5	22	150	3	0.548
8	6.5	22	0	3	0.340
9	6.5	10	150	3	0.624
10	6.5	20	150	3	0.469
11	6.5	60	150	3	0.479
12	6.5	100	150	3	0.424
13	6.5	200	150	3	0.319

Table S1. The electrolyte recipes with various concentrations of melamine additives.

*: The amount of exfoliated graphene is much lower and unavailable for measurement.

Figure S2. The characterizations of energy-dispersive X-ray spectroscopy(EDS) on asprepared graphene

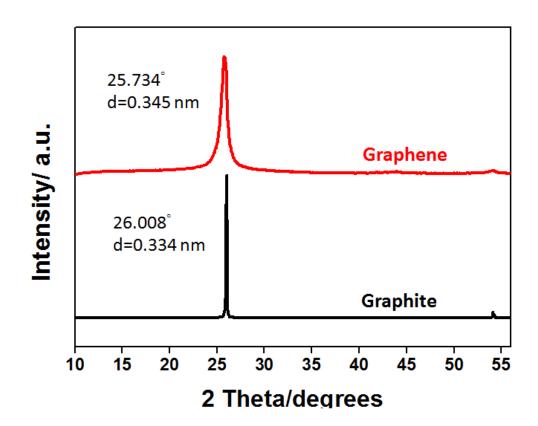
S3 Comparison with other graphene production methods

Here, we analyzed 56 reported papers that involve the production of graphene via a liquid processing method, including intensive ultrasonication, GO and rGO, ball milling, etc. All of the studied papers use graphite powder as the starting material. However, most of these papers reported a production rate below 0.01 g/hr, which is lower compared with the production rate of our method (>0.02g/hr). Moreover, the level of quality of graphene produced, such as oxidation degree and D/G ratio, are included for this discussion. It is clear seen that the flake size prepared by our method is 10 to 100 times larger than other works.

Ref	Method	Flake size	Raman D/G	Oxidation	Production
			ratio	degree(O%)	rate (g/hr)
This	Electrochemical	12~35 μm	0.53	3.68	1.54
work	Exfoliation in		(532 nm)	(by XPS)	
	the presence of				
	melamine				
1	Wet milling in	0.1-1.4 μm	0.6-0.7	N/A	1.5
	SDS		(532 nm)		
2	Shear	300-800 nm	0.17~0.37	None	5.3
	exfoliation in				
	organic solvent				
3	Liquid phase	2-2.5 μm	0.33	N/A	0.02
	exfoliation(in		(633 nm)		
	pyrene)				
4	GO by	1~5	>1	16	0.45
	Hummers'				
	method				

Table S3. The comparison with graphene production methods

Reference


[1] Catharina Knieke et al., Scalable production of graphene sheets by mechanical delamination. Carbon, 3196-3204, (2010)

[2] Keith R et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials, 624-630, (2014)

[3] Parviz, D. *et al.* Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. *ACS Nano* 6, 8857-8867, (2012).

[4] Ken-Hsuan Liao et al., Aqueous Only Route toward Graphene from Graphite Oxide.ACS Nano , 1253-1258, (2011)

S4. XRD patterns of (a) EC-graphene and (b) graphite

