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SANS modeling
The small angle neutron scattering (SANS) scattering cross sec-
tion dΣ

dΩ
(Q) in absolute units [cm−1] following core-shell model1–3

in dilute solution is given by (cf. Eq. (3) of the main paper)(
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where ∆ρcore = ρcore− ρsolvent and ∆ρcorona = ρcorona− ρsolvent

are the contrast difference of the core and corona of the micelles
with respect to the solvent and ρi the corresponding scattering
length densities. Vcore and Vcorona are the volume per molecule
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of the insoluble core and soluble corona blocks, respectively de-
fined as Vi = Mi/(diNA), with NA the Avogadro’s number, di the
bulk density and Mi the molecular weight in g/mol of the core or
corona blocks. Vm =Nagg (Vcore +Vcorona) as the micellar volume. ν̂

is an effective virial type excluded volume parameter that scales
with the effective concentration of the corona chains. Follow-
ing Svaneborg and Pedersen,2,4 the blob scattering from swollen
corona chains was modeled as Iblob(Q). In this model2 the chains
are considered to be self-avoiding and interact mutually by blobs
and also with the homogeneous core following a hard sphere po-
tential. The scattering amplitude from the core is given by
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for a core density profile ϕcore=1 (compact core). For strong
segregation the core smearing parameter is generally kept cs=0,
causing no effective change in the scattering pattern.

The scattering amplitude from the corona or shell is given by
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Where ϕstar(r) the star-like density profile. For a finite size of the
corona, the limit is chosen to be the micellar radius Rm, instead of
∞, with ss the smearing parameter for the corona. For the linear
chain form factor one can use the Beaucage form factor5,6 given
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by:
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Where, k = 1.06, Γ is the Gamma function and d f is the fractal
dimension of the scattering particle, 1≤ d f ≤ 3. In this approach
a polymer chain is considered as a mass fractal characterized by a
single spatial length scale, the radius of gyration Rg of the linear
chain, and a fractal dimension for polymers in good solvent is
typically d f = 1.7. The first term in Eq.(4) is from the Guinier
expression7.

DLS and rheology modeling
For dynamic light scattering (DLS) our data analysis of the ex-
perimental intensity auto correlation function (IACF) g(2)e (Q, t)
was based on the inverse-Laplace transformation by CONTIN al-
gorithm developed by Provencher8,9 i.e.

g(1)e (Q, t) =
1

2π

∞∫
0

dΓG(Γ)exp(−Γt) (5)

where Γ = DQ2, with D the diffusion coeffecient of the scattering
particles. We use the CONTIN algorithm as provided by the ALV-
software.

To yield the zero-shear viscosity η0 and to investigate the
shear rate dependent viscosity (shear thinning) the Carreau equa-
tion10 is used, which is given by:

η(γ̇)−η∞

η0−η∞

=
1

[1+(γ̇/γ̇c)a]
1−b

a

(6)

Where η∞ denotes high shear rate Newtonian limit of viscosity.
Frequently the high shear rate region is not observed, and η∞ is
set to zero in Eq.(6). γ̇c indicates the onset of the shear thinning
and has the dimensions of s−1; the power law exponent, (1− b),
describes the dependence of the viscosity on shear rate in the
shear thinning region. For our samples the value of (1− b) lies
between 0.2 to 0.76 at intermediate concentration for φ < φ∗m. It
is to be noted that, for dilute concentration (1−b) = 0, gives the
Newtonian plateau with zero-shear viscosity η0. The additional
dimensionless parameter ’a’ represents the width of the transition
region between the constant Newtonian plateau observed at low
shear rates and the asymptotic power law decrease of the viscosity
found at high shear rates. Value of a = 2 is kept constant.

The Krieger-Dougherty (KD) model for solutions of spherical
suspensions, it is given by :

η0(φ)

ηsolv
=

(
1−

φe f f
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)−ε

(KD) (7)

Here φe f f = φ , the effective volume fraction and ε = [η ]× φlim,
and Martin relations for solutions of spherical suspensions

η0(φ)

ηsolv
= 1+[η ]φe[η ]Kφ (Martin relation) (8)

for φ > φ∗. Here, K is a constant and [η ] = (η0−ηsolv)/(ηsolvφ) is

the intrinsic viscosity in the limit φ → 0, of the system11.
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