SUPPLEMENTARY INFORMATION

B₁₁⁻: A Moving Subnanoscale Tank Tread

Ying-Jin Wang,[†] Xiao-Yun Zhao,[†] Qiang Chen,[†] Hua-Jin Zhai,^{*,†,‡} and Si-Dian Li^{*,†}

[†]Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

[‡]State Key Laboratory of Quantum Optics and Quantum Optics Devices,

Shanxi University, Taiyuan 030006, China

*E-mail: hj.zhai@sxu.edu.cn, lisidian@sxu.edu.cn

SUPPLEMENTARY INFORMATION – PART I.

- **Table S1.** Cartesian coordinates for the global-minimum structures of $B_{11}^{-} C_{2\nu}$ (¹A₁), $B_{11} C_{2\nu}$ (²B₂), and their corresponding $C_{2\nu}$ transition states at the PBE0/6-311+G* level.
- **Figure S1.** Optimized structures of (a) $C_{2\nu}$ (¹A₁) global minimum (GM) and (b) $C_{2\nu}$ (¹A₁) transition state (TS) of B₁₁⁻ at PBE0/6-311+G* level. The bond distances are indicated in Å.
- **Figure S2.** Optimized structures of the $C_{2\nu}$ (²B₂) global minimum (GM) and the $C_{2\nu}$ transition state (TS) of the B₁₁ neutral cluster at the PBE0/6-311+G* level. The bond distances are indicated in Å.
- **Figure S3.** The total electron localization function (ELF) of the $B_{11}^{-} C_{2\nu}$ (¹A₁) global minimum.
- **Figure S4.** Chemical bonding in the $C_{2\nu}$ transition state of B_{11}^{-} . (a) The electron localization functions (ELFs), including the total ELF. (b) Bonding elements as revealed using the adaptive natural density partitioning (AdNDP) analysis.
- **Figure S5.** Schematic representation of the structural evolution during the peripheral rotation of the B_{11} cluster.

SUPPLEMENTARY INFORMATION – PART II.

A short movie extracted from the BOMD simulation for B_{11}^- . Each frame of the snapshot is reoriented horizontally. The simulation is performed at 300 K for over 20 ps and the movie roughly covers a 4 ps time span. **Fig. S1.** Optimized structures of (a) $C_{2\nu}$ (¹A₁) global minimum (GM) and (b) $C_{2\nu}$ (¹A₁) transition state (TS) of B₁₁⁻ at PBE0/6-311+G* level. The bond distances are indicated in Å.

GM, C_{2v}

TS, C_{2v}

Fig. S2. Optimized structures of the $C_{2\nu}$ (²B₂) global minimum (GM) and the $C_{2\nu}$ (²B₂) transition state (TS) of the B₁₁ neutral cluster at the PBE0/6-311+G* level. The bond distances are indicated in Å.

GM, C_{2v}

TS, C_{2v}

Fig. S3. The total electron localization function (ELF) of the $B_{11}^{-}C_{2\nu}({}^{1}A_{1})$ global minimum.

 $\mathsf{ELF}_{\mathsf{total}}=0.74$

Fig. S4. Chemical bonding in the $C_{2\nu}$ transition state of B_{11}^{-} . (a) The electron localization functions (ELFs). (b) Bonding elements as revealed using the adaptive natural density partitioning (AdNDP) analysis. Note that two diagonal bonds at the right side are 4c-2e σ bonds.

Fig. S5. Schematic representation of the structural evolution during the peripheral rotation of the B_{11} cluster.

Table S1. Cartesian coordinates for the global-minimum (GM) structures of $B_{11}^{-} C_{2\nu}$ (¹A₁), $B_{11} C_{2\nu}$ (²B₂), and their corresponding $C_{2\nu}$ transition states (TS) at the PBE0/6-311+G* level.

(a) GM of $B_{11}^{-}C_{2\nu}$ (¹A₁)

В	0.00000000	2.51850300	0.41101700
В	0.00000000	2.15908000	-1.11950100
В	0.00000000	0.78880700	-1.80161800
В	0.00000000	-0.78880700	-1.80161800
В	0.00000000	-2.15908000	-1.11950100
В	0.00000000	-2.51850300	0.41101700
В	0.00000000	-1.56602500	1.62109100
В	0.00000000	0.00000000	1.71913300
В	0.00000000	1.56602500	1.62109100
В	0.00000000	0.89122700	0.02944500
В	0.00000000	-0.89122700	0.02944500

(b) **TS of B**₁₁^{$- C_{2\nu}$}

В	0.00000000	0.78763400	-2.37444500
В	0.00000000	-0.78763400	-2.37444500
В	0.00000000	-1.75319900	-1.19307500
В	0.00000000	-1.77484700	0.37985000
В	0.00000000	-1.40357100	1.88642400
В	0.00000000	0.00000000	2.56556000
В	0.00000000	1.40357100	1.88642400
В	0.00000000	1.77484700	0.37985000
В	0.00000000	1.75319900	-1.19307500
В	0.00000000	0.00000000	-0.87073500
В	0.00000000	0.00000000	0.90766800

(c) GM of $B_{11} C_{2\nu} ({}^{2}B_{2})$

В	0.00000000	2.52678400	0.40746800
В	0.00000000	2.14422800	-1.09562700
В	0.00000000	0.77774500	-1.81539800
В	0.00000000	-0.77774500	-1.81539800
В	0.00000000	-2.14422800	-1.09562700
В	0.00000000	-2.52678400	0.40746800
В	0.00000000	-1.57646300	1.63342000
В	0.00000000	0.00000000	1.62873900
В	0.00000000	1.57646300	1.63342000
В	0.00000000	0.86164900	0.05576700
В	0.00000000	-0.86164900	0.05576700

(d) TS of $B_{11} C_{2\nu}$

В	0.00000000	0.77309500	-2.36698300
В	0.00000000	-0.77309500	-2.36698300
В	0.00000000	-1.78199600	-1.21072900
В	0.00000000	-1.69621200	0.34016900
В	0.00000000	-1.39098200	1.88717500
В	0.00000000	0.00000000	2.58981600
В	0.00000000	1.39098200	1.88717500
В	0.00000000	1.69621200	0.34016900
В	0.00000000	1.78199600	-1.21072900
В	0.00000000	0.00000000	-0.80483200
В	0.00000000	0.00000000	0.91575000