Supporting Information

Easy conversion of protein-rich enoki mushroom biomass to nitrogen-

doped carbon nanomaterial as a promising metal-free catalyst for

oxygen reduction reaction

Chaozhong Guo^{a, b,} *, Wenli Liao^c, Zhongbin Li^c, Lingtao Sun^a, Changguo Chen^{b,} *

^aResearch Institute for New Materials Technology, Chongqing University of Arts and Sciences,

Yongchuan, Chongqing 402160, China

^bSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

^cSchool of Materials and Chemical Engineering, Chongqing University of Arts and Sciences,

Yongchuan, Chongqing 402160, China

Corresponding Author: E-mail: guochaozhong1987@163.com; cgchen@cqu.edu.cn

Figure 1S The particle-size distribution of the N-C-900 sample.

Figure 2S Nitrogen adsorption/desorption isotherms of N-C-900 and its corresponding pore size distribution (inset).

Figure 3S Nitrogen adsorption/desorption isotherms of N-C@CNT-900 and its corresponding pore size distribution (inset).

Figure 4S Amperometric current–time (i–t) responses for ORR at +0.7 V vs. RHE in an O₂-saturated 0.1 M KOH electrolyte at N-C-900 and N-C@CNT-900 modified electrodes with a rotation speed of 1600 rpm.

Figure 5S Amperometric current–time (i–t) responses for ORR at +0.5 V vs. RHE in an O₂-saturated 0.5 M H_2SO_4 electrolyte at N-C-900 and N-C@CNT-900 modified electrodes with a rotation speed of 1600 rpm.

Table 1S. N 1s XPS results from Fig. 4 and ORR activity data from Fig. 5 and 6 for EM, N-C-900, N-C@CNT-900, and 20 wt.% Pt/C catalyst.

Sample	Total N content	Nitrile N	Pyrrolic N	Graphtic N	Oxidized N	E _{ORR} /	E _{ORR} /	$E_{1/2}$ /	$E_{1/2}$ /	j / mA cm ⁻² @	$j / mA cm^{-2} @$
	[%][*]	[%]	[%]	[%]	[%]		V	V	V	+0.5 V ^[6]	+0.5 V ^[0]
EM material	5.27	100.0									
N-C-900	3.43	26.6		43.3	30.1	0.87	0.77	0.73	0.46	3.62	1.56
N-C@CNT-900	3.20	25.5	33.3	41.2		0.94	0.81	0.81	0.60	3.98	2.85
20 wt.% Pt/C						0.98	0.93	0.86	0.82	5.02	3.74

^aThe total N content (at.%) was determined by XPS analysis in Figure 4a.

^bThe ORR activity data from Fig. 5 were obtained in O₂-saturated alkaline electrolyte.

^cThe ORR activity data from Fig. 6 were obtained in O₂-saturated acidic electrolyte.