# CO<sub>2</sub> controlled flocculation of microalgae using pH responsive cellulose nanocrystals -Supplementary Information

Samuel Eyley, Dries Vandamme, Sanjaya Lama, Guy Van den Mooter

Koenraad Muylaert, Wim Thielemans

15th July 2015

### Contents

| <b>S1</b>  | FTIR Spectrscopy                 | 5  |
|------------|----------------------------------|----|
| S2         | TGA                              | 6  |
| <b>S</b> 3 | X-ray photoelectron spectroscopy | 7  |
|            | S3.1 Tables                      | 7  |
|            | S3.2 Wide scans                  | 8  |
|            | S3.3 Carbon 1s scans             | 11 |
|            | S3.4 Oxygen 1s scans             | 13 |
|            | S3.5 Sulfur 2p scans             | 15 |
|            | S3.6 Nitrogen 1s scans           | 17 |
|            | S3.7 Chlorine 2p scans           | 17 |
|            | S3.8 Bromide 3d scans            | 19 |
| S4         | XRD                              | 20 |

# **List of Tables**

| S3.1 | Table of XPS data for CNCs          | 7 |
|------|-------------------------------------|---|
| S3.2 | Table of XPS data for ImBnOO-g-CNCs | 8 |

# **List of Figures**

| S1.1  | FTIR spectra of modified CNCs displayed as offset absorbance spectra                             | 5  |
|-------|--------------------------------------------------------------------------------------------------|----|
| S2.1  | TGA data for CNCs and ImBnOO-g-CNCs showing mass loss due to bound water at 125 °C               | 6  |
| S3.1  | XPS wide scan of CNCs                                                                            | 9  |
| S3.2  | XPS wide scan of ImBnOO-g-CNCs                                                                   | 10 |
| S3.3  | XPS carbon 1s high resolution scan of CNCs                                                       | 11 |
| S3.4  | XPS carbon 1s high resolution scan of ImBnOO-g-CNCs                                              | 12 |
| S3.5  | XPS oxygen 1s high resolution scan of CNCs                                                       | 13 |
| S3.6  | XPS oxygen 1s high resolution scan of ImBnOO-g-CNCs                                              | 14 |
| S3.7  | XPS sulfur 2p high resolution scan of CNCs                                                       | 15 |
| S3.8  | XPS sulfur 2p high resolution scan of ImBnOO-g-CNCs                                              | 16 |
| S3.9  | XPS nitrogen 1s high resolution scan of ImBnOO-g-CNCs                                            | 17 |
| S3.10 | XPS chlorine 2p high resolution scan of ImBnOO-g-CNCs                                            | 18 |
| S3.11 | XPS bromine 3d high resolution scan of ImBnOO-g-CNCs                                             | 19 |
| S4.1  | X-ray diffractogram of CNCs showing integral curves, and calculated crystallinity index          | 20 |
| S4.2  | X-ray diffractogram of ImBnOO-g-CNCs showing integral curves, and calculated crystallinity index | 21 |

# **S1 FTIR Spectrscopy**



Fig. S1.1 FTIR spectra of modified CNCs displayed as offset absorbance spectra





Fig. S2.1 TGA data for CNCs and ImBnOO-g-CNCs showing mass loss due to bound water at 125 °C.

## S3 X-ray photoelectron spectroscopy

#### S3.1 Tables

| Orbital           | Component                   | Binding Energy /eV | FWHM /eV   | Rel. A /% <sup>a</sup> | At %                 |
|-------------------|-----------------------------|--------------------|------------|------------------------|----------------------|
| C 1s              | C–C                         | 285.0              | 1.1        | 7.78                   | 4.74                 |
|                   | C–O                         | 286.6              | 1.1        | 77.47                  | 47.22                |
|                   | 0–C–O                       | 288.3              | 1.1        | 14.75                  | 8.99                 |
|                   | All                         |                    |            | 100                    | 60.95                |
| O 1s              | С–О–Н                       | 532.7              | 1.2        | 60 <sup>b</sup>        | 23.39                |
|                   | O-C-O                       | 533.3              | 1.2        | 40 <sup>b</sup>        | 15.60                |
|                   | All                         |                    |            | 100                    | 38.99                |
| S 2p <sup>c</sup> | j = 3/2<br>$j = 1/2$<br>All | 169.4<br>171.1     | 1.8<br>1.8 | 66.25<br>33.75<br>100  | 0.04<br>0.02<br>0.06 |

 Table S3.1
 Table of XPS data for CNCs

<sup>a</sup> Area relative to other components of same orbital

<sup>b</sup> Fixed to reflect stoichiometry <sup>c</sup> Rel. A/separation fixed to reflect spin-orbit splitting<sup>1</sup>

| Orbital            | Component      | Binding Energy /eV | FWHM /eV | Rel. A /% <sup>a</sup> | At %  |
|--------------------|----------------|--------------------|----------|------------------------|-------|
| C 1s               | C–C            | 285.0              | 1.1      | 15.81                  | 10.09 |
|                    | C–O            | 286.5              | 1.1      | 69.66                  | 44.44 |
|                    | 0–C–O          | 288.2              | 1.1      | 12.93                  | 8.25  |
|                    | 0–C=0          | 289.6              | 1.1      | 1.60                   | 1.02  |
|                    | All            |                    |          | 100                    | 63.80 |
| O 1s               | C–O–H          | 532.6              | 1.3      | 59.89 <sup>b</sup>     | 20.98 |
|                    | 0–C–O          | 533.2              | 1.3      | 40.11 <sup>b</sup>     | 14.05 |
|                    | All            |                    |          | 100                    | 35.03 |
| N 1s <sup>c</sup>  | Imidazole N 1  | 399.1              | 1.4      | 24.69                  | 0.17  |
|                    | Imidazole N 2  | 400.8              | 1.4      | 24.66                  | 0.17  |
|                    | Imidazolium N  | 402.0              | 1.4      | 50.65                  | 0.34  |
|                    | All            |                    |          | 100                    | 0.68  |
| S 2p <sup>d</sup>  | i = 3/2        | 168.6              | 1.4      | 66.25                  | 0.11  |
|                    | j = 1/2        | 170.2              | 1.4      | 33.75                  | 0.05  |
|                    | All            |                    |          | 100                    | 0.16  |
| Cl 2p              | j = 3/2        | 200.6              | 1.2      | 64.61                  | 0.18  |
|                    | j = 1/2        | 202.4              | 1.2      | 35.39                  | 0.10  |
|                    | All            |                    |          | 100                    | 0.28  |
| Br 3d <sup>d</sup> | j = 5/2 Env. 1 | 68.1               | 1.0      | 36.84                  | 0.02  |
|                    | j = 3/2 Env. 1 | 69.1               | 1.0      | 24.54                  | 0.01  |
|                    | j = 5/2 Env. 2 | 70.7               | 1.0      | 23.18                  | 0.01  |
|                    | j = 3/2 Env. 2 | 71.7               | 1.0      | 15.44                  | 0.01  |
|                    | All            |                    |          | 100                    | 0.06  |

 Table S3.2
 Table of XPS data for ImBnOO-g-CNCs

<sup>a</sup> Area relative to other components of same orbital
<sup>b</sup> Fixed to reflect stoichiometry
<sup>c</sup> Imidazole separation fixed based on Nolting et al.<sup>2</sup>
<sup>d</sup> Rel. A/separation fixed to reflect spin-orbit splitting<sup>1,3</sup>

#### S3.2 Wide scans



Fig. S3.1 XPS wide scan of CNCs



Fig. S3.2 XPS wide scan of ImBnOO-g-CNCs



Fig. S3.3 XPS carbon 1s high resolution scan of CNCs



Fig. S3.4 XPS carbon 1s high resolution scan of ImBnOO-g-CNCs

#### S3.4 Oxygen 1s scans



Fig. S3.5 XPS oxygen 1s high resolution scan of CNCs



Fig. S3.6 XPS oxygen 1s high resolution scan of ImBnOO-g-CNCs



Fig. S3.7 XPS sulfur 2p high resolution scan of CNCs



Fig. S3.8 XPS sulfur 2p high resolution scan of ImBnOO-g-CNCs

#### S3.6 Nitrogen 1s scans



Fig. S3.9 XPS nitrogen 1s high resolution scan of ImBnOO-g-CNCs

#### S3.7 Chlorine 2p scans



Fig. S3.10 XPS chlorine 2p high resolution scan of ImBnOO-g-CNCs

#### S3.8 Bromide 3d scans



Fig. S3.11 XPS bromine 3d high resolution scan of ImBnOO-g-CNCs

### S4 XRD



Fig. S4.1 X-ray diffractogram of CNCs showing integral curves, and calculated crystallinity index.



Fig. S4.2 X-ray diffractogram of ImBnOO-g-CNCs showing integral curves, and calculated crystallinity index.

### **Bibliography**

- [1] Thermo Scientific XPS Knowledge Base Sulfur, accessed April 2015, http://xpssimplified.com/elements/ sulfur.php.
- [2] D. Nolting, N. Ottosson, M. Faubel, I. V. Hertel and B. Winter, J. A, 2008, 130, 8150–8151.
- [3] Thermo Scientific XPS Knowledge Base Bromine, accessed April 2015, http://xpssimplified.com/ elements/bromine.php.