Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supplementary material (ESI) for Nanoscale

This journal is © The Royal Society of Chemistry

Electronic Supplementary Information for:

Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

Roxanne Hachani,^{ab} Mark Lowdell,^c Martin Birchall,^d Aziliz Hervault,^{ab} Damien Mertz,^e Sylvie Begin-Colin^e and Nguyen Thi Kim Thanh^{ab*}

^{a.} Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.

- b. UCL Healthcare and Biomagnetics and Nanomaterials Laboratories, 21
- *Albemarle Street, London W1S 4BS, United Kingdom. E-mail: ntk.thanh@ucl.ac.uk; Fax: +44 (0)207 670 2920; Tel: +44 (0)207 491 6509*
- ^{c.} Department of Haematology, Royal Free Hospital, University College London, London NW3 2QG, United Kingdom.
- ^{d.} University College London Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, United Kingdom.
- e. ICPMS, UMR CNRS-UdS-ECPM 7504 23 rue du loess BP 43, 67034 Strasbourg, France.

Fig. S 1. A) Weight loss curve (blue) and differential of the weight loss curve (red) of the iron oxide nanoparticles synthesised with triethylene glycol. The differential thermal analysis of an inert reference Al_2O_3 is indicated by the green curve and reflects the temperature difference between the sample and reference. B) Weight loss curve of TREG coated IONPs (% as a function of the temperature).

Fig S 2. Magnetisation curves of IONPs obtained with tri(ethylene glycol) in a conventional apparatus consisting of a round bottom flask, magnetic stirring and condenser.

Fig. S 3. TEM image and particle size distribution of IONPs obtained with tri(ethylene glycol) in a conventional apparatus consisting of a round bottom flask, magnetic stirring and condenser.

Fig. S 4. DLS measurements of IONP-TREG obtained in a conventional apparatus in water and PBS

Fig. S 5. DLS measurements of IONP-TREG in water, IONP-DHCA in water and PBS post synthesis

Fig. S 6. DLS measurements of IONP-TREG in water, IONP-TA in water and PBS post synthesis

Fig. S 7. Dynamic light scattering measurements of IONP-DHCA in water 72 days apart

Fig. S 8. Dynamic light scattering measurements of RMPI 10% FBS, IONP-DHCA and IONP-TA in RPMI 10% FBS

Fig. S 9. Dynamic Light Scattering measurements of IONP-DHCA in water and PBS after 7 days of dialysis.

Table. S 10. Summary of the different reaction conditions and the characteristics of the IONPs obtained

Reaction conditions	$D_{\text{TEM}} \pm \sigma \text{ TEM} (nm)$	D _{XRD} (nm)	Ms at 300 K (Am²kg⁻¹)
0.1 M Fe(acac)₃ in TREG 8 h in autoclave	9.1 ± 0.9	8.4	76.5
0.1 M Fe(acac)3 in TEG 8 h in autoclave	13.9 ± 3.4	12.8	79.1
0.1 M Fe(acac) ₃ in DEG 8 h in autoclave	5.8 ± 0.8	5.9	63.4
0.2 M Fe(acac) ₃ in TREG conventional set-up	9.9 ± 1.8	9.8	81.8
0.2 M Fe(acac) ₃ in TREG 8 h in autoclave	10.9 ± 1.1	8.9	84.4
0.2 M Fe(acac) ₃ in TREG 1 h in autoclave	7.2 ± 0.8	6.2	61.2
0.2 M Fe(acac) ₃ in TREG 24 h in autoclave	15.1 ± 1.9	13.5	88
0.4 M Fe(acac)3 in TREG 8 h in autoclave	14.7 ± 3.5	14.7	82.71

Fig. S 11. ATR-FTIR spectrum of IONPs coated with TREG (IONP), 2,3-dihydroxyhydrocinnamic acid (IONP-DHCA) and tartaric acid (IONP-TA).

Fig. S 12. Plot of relaxation rate $1/T_1$ over Fe₂O₃ concentration of the IO-DHCA nanoparticles maintained at 250 °C during 12 h (left) and 24 h (right). The slope indicated the specific relaxivity (r_2 or r_1) of the samples.