## Interaction studies reveal specific recognition of an anti-inflammatory

## polyphosphorhydrazone dendrimer by human monocytes

Jérémy Ledall,<sup>a,b</sup> Séverine Fruchon,<sup>a,b</sup> Matteo Garzoni,<sup>c</sup> Giovanni M. Pavan,<sup>c</sup> Anne-Marie Caminade,<sup>b</sup> Cédric-Olivier Turrin,<sup>\*b</sup> Muriel Blanzat<sup>\*d</sup> and Rémy Poupot<sup>\*a</sup>

<sup>a</sup> INSERM, UMR1043, CNRS, U5282, Université de Toulouse, UPS, Center of Physiopathology of Toulouse-Purpan, CHU Purpan, BP 3028, Toulouse F-31300, France
<sup>b</sup> CNRS, UPR 8241, Université de Toulouse, UPS, INPT, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, Toulouse F-31077, France
<sup>c</sup> Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno 6928, Switerland
<sup>d</sup> Laboratoire IMRCP, CNRS UMR 5623, Université de Toulouse, UPS, 118 route de Narbonne, Toulouse F-31062, France.

\* Corresponding authors. *E-mail addresses:* <u>cedric-olivier.turrin@lcc-toulouse.fr</u>, <u>blanzat@chimie.ups-tlse.fr</u>, <u>remy.poupot@inserm.fr</u>

**Keywords:** phosphorous-based dendrimers; human monocytes; immuno-modulation; molecular simulations; binding; nanobiotechnology; membrane interaction.







**(a)** 

**(b)** 

## Table S1

Main transition calorimetric data<sup>[a]</sup> for MLV suspensions of pure DPPC (30 mM) alone, and with dendrimers **1**, **2**, **6** or **9** (3 mM).

|           | Scan<br>number  | T <sub>m</sub> (°C) | $\Delta H^{[b]}$ |
|-----------|-----------------|---------------------|------------------|
| MLV alone | 1 <sup>st</sup> | 40.99               | -8.87            |
|           | 4 <sup>th</sup> | 41.04               | -8.96            |
| MLV + 1   | 1 <sup>st</sup> | 41.03               | -7.48            |
|           | 4 <sup>th</sup> | 41.05               | -7.48            |
| MLV + 6   | 1 <sup>st</sup> | 41.01               | -7.24            |
|           | 4 <sup>th</sup> | 41.02               | -7.38            |
| MLV + 2   | 1 <sup>st</sup> | 41.06               | -7.31            |
|           | 4 <sup>th</sup> | 41.10               | -7.47            |
| MLV + 9   | 1 <sup>st</sup> | 40.90               | -7.33            |
|           | 4 <sup>th</sup> | 40.97               | -7.47            |



**Fig. S2** DSC scans for pure DPPC and DPPC/POPC (30 mM) MLV suspensions in the presence of dendrimers **1**, **2**, **6** or **9** (3 mM).



**Fig. S3** Area per lipid for the POPC model extracted from the MD simulation as a function of simulation time. The simulation data (blue) is in good agreement with the experimental results (dotted and solid black lines).<sup>1,2</sup>



Fig. S4 Dendrimers absorption onto the POPC membrane. (a) Radial distribution functions of the centres of mass of dendrimers 1 (red) and 2 (blue) calculated respect to the lipid bilayer centre (origin of the *x* axis). (b) Free energy of absorption ( $\Delta A$ ) extracted from the *g*(*r*) data as A=-kT ln(*g*(*r*)).<sup>3–5</sup> The dotted lines identify the lipid bilayer surface (centres of mass of the lipid heads).

## References

- 1 A. A. Skjevik, B. D. Madej, R. C. Walker and K. Teigen, LIPID11: a modular framework for lipid simulations using amber, *J. Phys. Chem. B*, 2012, **116**, 11124–11136.
- N. Kucerca, M. P. Nieh and J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature, *J. Biochim. Biophys. Acta Biomembr.*, 2011, 1808, 2761–2771.
- D. Chandler, Introduction to Modern Statistical Mechanics, 3rd ed.; Oxford University
   Press: New York, NY, 1987.
- 4 D. A. Torres, M. Garzoni, A. V. Subrahmanyam, G. M. Pavan and S. Thayumanavan, Protein-triggered supramolecular disassembly: insights based on variations in ligand location in amphiphilic dendrons, *J. Am. Chem. Soc.*, 2014, **136**, 5385–5399.
- 5 G. M. Pavan, Modelling the interaction between dendrimers and nucleic acids: a molecular perspective through hierarchical scales, *Chem. Med. Chem.*, 2014, **9**, 2623–2631.