Electronic Supplementary Information

Simultaneous realization of Hg²⁺ sensing, magnetic resonance imaging and upconversion luminescence *in vitro* and *in vivo* bioimaging based on hollow mesoporous silica coating UCNPs and ruthenium complex

Xiaoqian Ge,^a Lining Sun,^{*a} Binbin Ma,^b Di Jin,^c Liang Dong,^c Liyi Shi,^a Nan Li,^d Haige Chen^{*c} and Wei Huang^{*b}

^{*a*} Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai 200444, P. R. China. E-mail: <u>Insun@shu.edu.cn</u>; Tel: +86-21-66137153

^{*b*} State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. E-mail: <u>whuang@nju.edu.cn</u>.

^c Department of Urology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China. E-mail: <u>kirbyhaige@aliyun.com</u>.

^d Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China.

Fig. S1. Dynamic light scattering (DLS) of Ru-UCNPs@HmSiO₂-PEI in water.

Fig. S2. The zeta potential of UCNPs@mSiO₂, UCNPs@mSiO₂-PEI, UCNPs@HmSiO₂-PEI, and Ru-UCNPs@HmSiO₂-PEI.

Fig. S3. The XRD patterns of UCNPs, UCNPs@mSiO₂, UCNPs@HmSiO₂-PEI, Ru-UCNPs@HmSiO₂-PEI, and the standard card of β -NaYF₄ (JCPDS: 16-0334).

Fig. S4. Energy dispersive X-ray (EDX) spectrum of Ru-UCNPs@HmSiO₂-PEI.

Fig. S5. FT-IR spectra of the UCNPs@mSiO₂, UCNPs@HmSiO₂-PEI, and Ru-UCNPs@HmSiO₂-PEI.

Fig. S6. (A) N_2 adsorption-desorption isotherm of Ru-UCNP@HmSiO₂-PEI; (B) The pore size distribution of Ru-UCNPs@HmSiO₂-PEI.

Fig. S7. (A) The photos of Ru-UCNPs@HmSiO₂-PEI in water, PBS and DMEM culture solution; (B) The photos of Ru-UCNPs@HmSiO₂-PEI placed in water, PBS and DMEM culture solution after one week; (C) UV-Vis aborption spectra of Ru-UCNPs@HmSiO₂-PEI in PBS solution on first day and after one week; (D) UCL spectra of Ru-UCNPs@HmSiO₂-PEI in PBS solution on first day and after one week.

Fig. S8. Thermogravimetry (TG) curves of UCNPs@HmSiO₂-PEI and Ru-UCNPs@HmSiO₂-PEI.

Fig. S9. The Ru complex concentrations of Ru-UCNPs@HmSiO₂-PEI and Ru-UCNPs@mSiO₂-PEI were calculated by using the detailed titration spectra. (A) UV/Vis absorption spectra of Ru complex with different concentrations. (B) The absorption intensity at 532 nm as a function of Ru complex concentration. The Ru complex contents of Ru-UCNPs@HmSiO₂-PEI and Ru-UCNPs@mSiO₂-PEI were determined as 23.4 μ M (15.7 wt%) and 15.0 μ M (10.1 wt%), respectively. The concentration of Ru-UCNPs@HmSiO₂-PEI and Ru-UCNPs@mSiO₂-PEI are both 0.15 mg·mL⁻¹.

Fig. S10. The sensitivity test of Ru-UCNPs@HmSiO₂-PEI towards Hg²⁺ by using upconversion luminescence emission technique. The limit of detection limit (LOD) was given by the equation LOD= $3S_0/S$; where 3 is the factor at the 99% confidence level, S_0 the standard deviation of the blank measurements (n = 10, S_0 =0.001392), and S is the slope of the calibration curve. The limit of detection (LOD) was determined to be 0.16 μ M.

Fig. S11. *In vitro* cell viabilities of HeLa cells incubated with Ru-UCNPs@HmSiO₂-PEI at different concentrations (0, 50, 100, 200, 300, 400 μ g·mL⁻¹) for 24 h.