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Structure fabrication

Samples are fabricated using two-step electron-beam lithography (EBL). First, a structural layer 

composed of disk pairs, bars, and alignment markers are defined in a double layer PMMA resist 

(Allresist) using EBL (Raith e_line) on a quartz glass substrate (Suprasil, Heraeus). A 3 nm 

chromium adhesion layer and a 40 nm gold film are deposited on the substrate using thermal 

evaporation followed by a lift-off procedure. Next, a 70 nm PC403 (JCR, Japan) layer is coated 

on the substrate. A prebaking process is first carried out to remove the solvent from the polymer 

by increasing the baking temperature from 90 °C to 130 °C. A longer baking process at 180 °C 

for 30 min is then applied. Subsequently, the substrate is coated with a PMMA layer. Computer-

controlled alignment using the gold markers is carried out to define a second structural layer 

composed of disk pairs. Finally, metal evaporation, lift-off, and planarization using PC403 are 

performed. All samples have a total area of 30 m × 30 m. 

Optical characterization

The spectra are measured using a Fourier-transform infrared spectrometer (Bruker Vertex 80, 

tungsten lamp) equipped with an infrared microscope (Bruker Hyperion, numerical aperture NA 

= 0.4). An infrared polarizer and a broadband (700 nm – 2500 nm) infrared quarterwave plate (B. 

Halle Nachfl., Berlin) are used to generate incident circularly polarized light. The measured 
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spectra are normalized with respect to that of the substrate.

Numerical simulations

Numerical simulations are carried out using commercial software COMSOL Multiphysics based 

on a finite element method (FEM). The refractive indices of the quartz substrate and PC403 are 

taken both as 1.5. The dielectric constants of bulk gold in the near infrared region is described by 

the Drude model with , and . Owing to the 𝜔𝑃 = 2𝜋 × 2.175 × 1015𝑠 ‒ 1
𝛾 = 2𝜋 × 6.5 × 1012𝑠 ‒ 1

surface scattering and grain boundary effects in the thin gold film, the simulation results are 

obtained using a damping constant that is three times larger than the bulk value.

Transmittance spectra of the gold bar

Figure S1: (a) Experimental and (b) simulated CD spectra of the plasmonic achiral molecule. 
Charge distribution at the resonance (~1900 nm) is included as the inset image in (b).

Analytical model

Here, we develop an extended plasmonic Bohn Kuhn modelS1,S2. Taking the superstructures in 

Fig. 5 as an example, the L-modes of the two disk pairs on the upper and bottom layers can be 
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represented by a yellow L-oscillator ( ) and a blue L-oscillator ( ), 𝑢1 = 𝐴1𝑒 ‒ 𝑖𝜔𝑡 𝑢2 = 𝐴2𝑒 ‒ 𝑖𝜔𝑡

respectively (see Fig. 5c). The T-modes of the two disk pairs are represented by a yellow T-

oscillator ( ) and a blue T-oscillator ( ), respectively. In each disk pair, 𝑢4 = 𝐴4𝑒 ‒ 𝑖𝜔𝑡 𝑢5 = 𝐴5𝑒 ‒ 𝑖𝜔𝑡

the L-mode and the T-mode oscillate perpendicularly to each other. The gold bar is represented 

by a red oscillator ( ). The superstructure interacts with circularly polarized light 𝑢3 = 𝐴3𝑒 ‒ 𝑖𝜔𝑡

propagating along the z-direction. The coupled oscillators fulfill the following Lorentzian 

equations,

                        (1)

[ 𝐷1 𝜅12 𝜅13
𝜅12 𝐷2 0
𝜅13 0 𝐷3

⋱

⋱
𝐷4 𝜅45
𝜅45 𝐷5

][𝐴1
𝐴2
𝐴3
𝐴4
𝐴5

] = ‒ [𝑔1𝐸𝑦𝑒𝑖𝑘(𝑧 + 𝑑 2)

𝑔2𝐸𝑥𝑒𝑖𝑘(𝑧 ‒ 𝑑 2)

𝑔3𝐸𝑥𝑒𝑖𝑘(𝑧 ‒ 𝑑 2)

𝑔4𝐸𝑥𝑒𝑖𝑘(𝑧 + 𝑑 2)

𝑔5𝐸𝑦𝑒𝑖𝑘(𝑧 ‒ 𝑑 2)
]

where .  is the resonance frequency;  is the loss in the 𝐷𝑖 = (𝜔 2
0𝑖 ‒ 𝜔2 ‒ 𝑖𝜔𝛾𝑖), 𝑖 = 1,2,⋯,5 𝜔0𝑖 𝛾𝑖

oscillator; , , and  denote the corresponding coupling constants of two coupled 𝜅12 𝜅13 𝜅45

oscillators. The vertical distance between the two layers is ;  is a geometrical parameter 𝑑 𝑔𝑖

indicating how strong the mode is coupled to the external field.

Equation 1 consists of two independent subsystems. The solution to the first subsystem can be 

obtained,

                                   (2a)

𝐴1 =‒

𝑔1𝐸𝑦𝑒𝑖𝑘𝑑 2 ‒ (𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)𝐸𝑥𝑒 ‒ 𝑖𝑘𝑑 2

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

𝑒𝑖𝑘𝑧

                                                     (2b)
𝐴2 =

‒ 𝑔2𝐸𝑥𝑒𝑖𝑘(𝑧 ‒ 𝑑 2) ‒ 𝜅12𝐴1

𝐷2
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                                                      (2c)
𝐴3 =

‒ 𝑔3𝐸𝑥𝑒𝑖𝑘(𝑧 ‒ 𝑑 2) ‒ 𝜅13𝐴1

𝐷3

We assume that there are  charge carriers per unit volume. By using the general formula for 𝑁0

the current density at point : , here  and  are the charge and velocity, 𝑟 𝐽(𝑟) = ‒ 𝑒𝑣𝛿(𝑟) ‒ 𝑒 𝑣

respectively. The total current density can be calculated by

                                                (3a)
𝐽𝑥 =‒ 𝑒𝑁0(𝑔2

𝑑𝑢2

𝑑𝑡
+ 𝑔3

𝑑𝑢3

𝑑𝑡 )

                                                               (3b)
𝐽𝑦 =‒ 𝑒𝑁0(𝑔1

𝑑𝑢1

𝑑𝑡 )
 is zero. Then, through , we can derive the nonzero polarization 𝐽𝑧 𝑃(𝜔,𝑟) = 𝐽(𝜔,𝑟) ( ‒ 𝑖𝜔)

components,

                  (4a)

𝑃𝑥 = 𝑒𝑁0[(𝑔2
2

𝐷2
+

𝑔2
3

𝐷3)𝐸𝑥 ‒
(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)𝑔1𝐸𝑦𝑒𝑖𝑘𝑑 ‒ (𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)2𝐸𝑥

(𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3 ) ]𝑒𝑖𝑘𝑧

                                         (4b)

𝑃𝑦 = 𝑒𝑁0[𝑔2
1𝐸𝑦 ‒ 𝑔1(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)𝐸𝑥𝑒 ‒ 𝑖𝑘𝑑

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

]𝑒𝑖𝑘𝑧

Because , an approximation,  can be utilized. 𝑑 ≪ 𝜆 𝑒 ± 𝑖𝑘𝑑≅1 ± 𝑖𝑘𝑑

Considering the first-order approximation of the linear constitutive equationS3,

           (5)
𝑃𝑖(𝜔) =

1
4𝜋{ ∑

𝑗 = 𝑥,𝑦,𝑧
[𝜀𝑖𝑗(𝜔) ‒ 𝛿𝑖𝑗]𝐸𝑗(𝜔) + ∑

𝑗 = 𝑥,𝑦,𝑧
∑

𝑛 = 𝑥,𝑦,𝑧

Γ𝑖𝑗𝑛(𝜔)
∂𝐸𝑗(𝜔)

∂𝑟𝑛 }
Here,  is the Kronecker delta symbol,  is a material permittivity tensor, and  is a material 𝛿𝑖𝑗 𝜀𝑖𝑗 Γ𝑖𝑗𝑛
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nonlocality tensor. By comparing Eq. 4 with Eq. 5, we can obtain the nonzero components of the 

nonlocality tensor, 

                                        (6) 

Γ𝑥𝑦𝑧 =‒ Γ𝑦𝑥𝑧 =‒ 4𝜋𝑒𝑁0𝑑[𝑔1(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

]
In an isotropic medium, when considering the propagation direction, we obtain

                                          (7a)

Γ = Γ𝑥𝑦𝑧 =‒ 4𝜋𝑒𝑁0𝑑[𝑔1(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

]
Now only the first subsystem of Eq.1 is considered. Similarly, the contribution from the 

transvers modes can be obtained, 

                             (7b)

Γ = Γ𝑥𝑦𝑧 =‒ 4𝜋𝑒𝑁0𝑑[𝑔1(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

+

𝑔4(𝑔5

𝜅45

𝐷5
)

𝐷4 ‒
𝜅 2

45

𝐷5

]
The ellipticity of the propagation wave per length unit can be determined byS3

                                                    (8)
sin 2𝜂 = tanh [𝜔2

𝑐2
𝐼𝑚{Γ}]

because , we can take the first-order approximation𝜂 ≪ 1

                                                            (9)
𝜂 =

𝜔2

2𝑐2
𝐼𝑚{Γ}

Transmittance  can be calculated from the relation with Extinction (Ext): , (𝑇) 𝐸𝑥𝑡 + 𝑇 = 1

namely,
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                                       (10)∆𝐸𝑥𝑡 = 𝐸𝑥𝑡𝐿𝐶𝑃 ‒ 𝐸𝑥𝑡𝑅𝐶𝑃 = 𝑇𝑅𝐶𝑃 ‒ 𝑇𝐿𝐶𝑃

From the following relationS4, 

                                               (11)
tan 𝜂 =

𝐸𝑅𝐶𝑃 ‒ 𝐸𝐿𝐶𝑃

𝐸𝑅𝐶𝑃 + 𝐸𝐿𝐶𝑃
=

𝑇𝑅𝐶𝑃 ‒ 𝑇𝐿𝐶𝑃

𝑇𝑅𝐶𝑃 + 𝑇𝐿𝐶𝑃

where  and  are the amplitudes of the right- and left- handed circularly polarized light, 𝐸𝑅𝐶𝑃 𝐸𝐿𝐶𝑃

we can obtain  because . 
𝜂 =

𝑇𝑅𝐶𝑃 ‒ 𝑇𝐿𝐶𝑃

4 𝜂 ≪ 1

Finally, by substituting Eq. 9 to Eq. 11, we obtain

                    (12)

Δ𝑇 = 𝑇𝑅𝐶𝑃 ‒ 𝑇𝐿𝐶𝑃 =
4𝜔2

2𝑐2
𝐼𝑚{ ‒ 4𝜋𝑒𝑁0𝑑[𝑔1(𝑔2

𝜅12

𝐷2
+ 𝑔3

𝜅13

𝐷3
)

𝐷1 ‒
𝜅 2

12

𝐷2
‒

𝜅 2
13

𝐷3

+

𝑔4(𝑔5

𝜅45

𝐷5
)

𝐷4 ‒
𝜅 2

45

𝐷5

]}
To provide a quantitative description, we use Eq. 12 to fit the simulated CD spectra in Fig. 5. 

The extracted parameters are , , 348.6 𝜔01 = 𝜔02 = 271.8 𝑇𝐻𝑧 𝜔03 = 158.6 𝑇𝐻𝑧 𝜔04 = 𝜔05 =  

THz; , ; , , 𝛾1 = 𝛾2 = 240 𝑇𝐻𝑧 𝛾3 = 120 𝑇𝐻𝑧 𝛾4 = 𝛾5 = 190 𝑇𝐻𝑧 𝜅12 = 4 × 1028𝑠 ‒ 2

, . For the fitting curve of Fig. 5 (i), ,  𝜅13 = 3 × 1028𝑠 ‒ 2 𝜅45 = 5 × 1028𝑠 ‒ 2 𝑔1 = 𝑔2 = 1

.9, ; for Fig. 5(ii), , .9, ; for Fig. 5 (iii), 𝑔3 = 1 𝑔4 = 𝑔5 = 0.4 𝑔1 =‒ 𝑔2 = 1 𝑔3 = 1 𝑔4 =‒ 𝑔5 = 0.4

, .9, . As shown in Fig. 5d, the fitted CD spectra can 𝑔1 =‒ 𝑔2 = 1 𝑔3 =‒ 1 𝑔4 =‒ 𝑔5 = 0.4

reproduce the experimental and simulated results very well. 

Sketch of the L- and T-modes

The L- and T-modes of the four disk structures form chiral configurations of different 

handedness.



7

Figure S2: Illustrations for the L- and T-modes in the disk dimer and four disk structures.
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