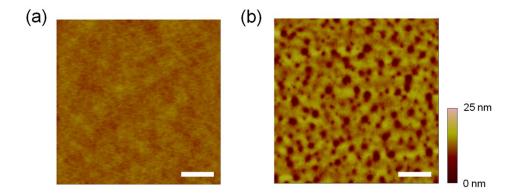
Supplementary Information

Room-Temperature, Solution-Processable Organic Electron Extraction Layer for High-Performance Planar Heterojunction Perovskite Solar Cells

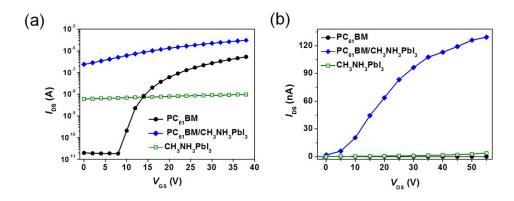
Jong H. Kim,^{a,b,c} Chu-Chen Chueh,^c Spencer T. Williams^c and Alex K.-Y. Jen*c,d

^{a.} Department of Chemical Engineering Education, Chungnam National University, 99

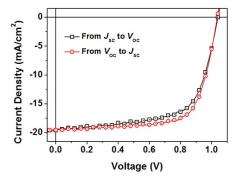
Daehak-ro, Yuseong-gu, 305-764, South Korea.


^{b.} Graduate School of Energy Science and Technology, Chungnam Naional University,

99 Daehak-ro, Yuseong-gu, 305-764, South Korea.


^{c.} Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA.

^{d.} Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA.


*Address correspondence to: <u>ajen@u.washington.edu</u>

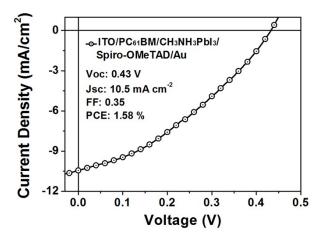

Figure S1. Atomic force microscopy images of FPI-PEIE and $PC_{61}BM$ on FPI-PEIE (scale bar: $1\mu m$).

Figure S2. (a) Transfer characteristics of field-effect transistors based on pristine $PC_{61}BM$ (circles), pristine $CH_3NH_3PbI_3$ (squares) and $PC_{61}BM/CH_3NH_3PbI_3$ (diamonds), and (b) output characteristics of field-effect transistors based on pristine $PC_{61}BM$ (circles), pristine $CH_3NH_3PbI_3$ (squares) and $PC_{61}BM/CH_3NH_3PbI_3$ (diamonds) at zero gate voltage.

Figure S3. J-V characteristics of the studied CH₃NH₃PbI₃ solar cell based on FPI-PEIE/PC₆₁BM layer under AM 1.5G irradiation at 100 mW cm⁻². The scan rate is 0.05 V s⁻¹.

Figure S4. *J*–*V* characteristics of the control perovskite solar cell using a single $PC_{61}BM$ layer as the EEL under AM 1.5G irradiation at 100 mW cm⁻².