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Fig. S1. a) and b) SEM images of the precursor powder of Cu(NO3)2-C6H12O6/ 

CO(NH2)2-NaCl after freeze-drying, suggesting that the NaCl particles uniformly 

coated with a thin film of Cu(NO3)2-C6H12O6/CO(NH2)2 complex were 

self-assembled to 3D structure during the freeze-drying process. c) and d) SEM 

images of the CVD-synthesized Cu@G-NGNs products before eliminating the NaCl, 

showing that the 3D self-assembly was well preserved after CVD process and the 

Cu@G-NGNs were formed on the surface of 3D NaCl self-assembly. 
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Fig. S2. Thermogravimetric analysis of (a) Cu-50 and (b) Cu-240 in air condition. By 

the same calculation method described in the text, the weight percentage of Cu for 

Cu-50 and Cu-240 were calculated as 67.7 wt.% and 87.3 wt.%, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S3. SEM images of the resulting materials’ morphology: (a) Cu-50 and (b) 

Cu-240. TEM images of (c) Cu-50 and (d) Cu-240. (e-f) The corresponding particle 

size distribution of Fig. S3(c) and (d), respectively (Each calculated from 50 NPs). 

The average size calculated for the two samples were 48.9 nm (~50 nm) and 236.3 nm 

(~240 nm). 
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Fig. S4. Nitrogen adsorption–desorption isotherms, and inset is pore size distribution 

curve of Cu@G-NGNs. 

 

Table S1. Detailed information of comparison of the BET specific surface area 

between Cu@G-NGNs and reported metallic SERS substrate as well as rGO/Cu NPs 

composites. 

  

Sample Name 
BET Specific Surface 

Area (m2/g) 
Metal wt.% References 

Cu@G-NGNs 76.324 79.3% This work 

Cu butterfly wings 56.6 100% S1 

Ag sponges 39 100% S2 

Ag hollow spheres 30.9 100% S3 

Au–Pd foams 20.19 100% S4 

rGO/Cu NPs 29.96 >63% S5 

 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S5. a) and b) SEM, c) and d) HRTEM images of the Cu@G-GNs, showing a 

similar morphology with Cu@G-NGNs. The graphene walls were homogenously 

docorated with Cu NPs (5-30 nm). 
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Fig. S6. HRTEM images of Cu@G nanoparticles, showing that Cu nanoparticle is 

entirely encapsulated by thin graphene shells (~ 1 nm) tightly anchored on the 

graphene walls from the 3D network. 
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Fig. S7. EDS pattern and and corresponding TEM image (inset) of Cu@G-NGNs. 

The EDS sample was prepared using Cu@G-NGNs powder dispersed in ethanol 

followed by short-time ultrasonification. A small drop of this dispersion was placed 

on a carbon coated Mo grid, dried under ambient conditions. 

 

 

Table S2. The detailed element contents of EDS analysis in Fig. S7. 

Element Weight Ratio 

(%) 

Atomic Ratio 

 (%) 

C K 16.23 47.48 

O K 3.77 8.28 

Cu K 80.00 44.23 
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Fig. S8. The XPS full spectrum of Cu@G-NGNs. 

 

 

Table S3. The relative element ratio of XPS analysis in Fig.S8. 

Element C1s N1s O1s Cu2p3 

Relative 

Atomic Ratio（%） 
81.97 0.92 13.41 3.7 

Binding Energy (eV) 
284.32 

288.58 
399.42

529.61 

531.91 
932.35 

The relative content of N element (At%) doped in graphene was calculated by the 
following equation: 

1

1 1

% 100%N s

C s N s

A
At

A A
 


=0.92/(81.97+0.92)*100%=1.10%. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S9. HRTEM images of the aggregation and interdiffusion of the Cun/C 

nanoclusters. b) is the magnified TEM image of the selected area in a). 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. S10. a) and b) SEM images of NGNs obtained by etching Cu NPs from the 

Cu@G-NGNs composites. c) SEM images of commercial Cu NPs with average size 

of 50 nm. 
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Fig. S11. (a) The intensity of SERS signal versus the concentration of (a) R6G at 612 

cm-1, and (b) CV at 1170 cm-1 for Cu@G-NGNs (Cu-20) substrate. 5 spectra of 

different spots were used to calculate the intensity for each concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S12. SERS spectra of CV at different concentrations adsorbed on (a) Cu-50 and 

(c) Cu-240 substrate. The corresponding intensity of SERS signal versus the 

concentration of CV at 1170 cm-1 for (b) Cu-50 and (d) Cu-240 substrate, respectively. 

5 spectra of different spots were used to calculate the intensity for each concentration.   
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Detailed calculation of enhancement factor 

  The SERS enhancement factors (EF) for R6G can be calculated according to the 

equation 

EF SERS bulk

bulk SERS

I N

I N





 

Where SERSI  and bulkI  are the integrated intensities of R6G molecules adsorbed on 

the Cu@G-NGNs substrate and from 10-2 M of R6G bulk solution, respectively. 

SERSN  and bulkN  are the corresponding numbers of R6G molecules adsorbed on the 

Cu@G-NGNs substrate and in the bulk solution in the focal volume of the laser beam, 

respectively. 

For valuable determination of bulkN  and SERSN , 5 μL R6G solution of 10-2 M and 

10-5 M were carefully dropped on glass and Cu@G-NGNs substrates, respectively. 

bulk bulk AN Ahc N  

Where A  is the area of the laser focal spot (diameter of 1 μm), h  is the confocal 

depth of the laser (15 μm), which is calculated by a modified equation in a similar 

method: S6 0

0

( ) /h I z dz I


   

Where ( )I z  is the intensity of the Raman peak of glass (1093 cm-1), which is 

measured as a reference to calculate h . Considering the transparent feature of glass 

substrate, it is meaningless to calculate the intensity below the focal plane of glass 

substrate in Fig. S13. So the measured h  is an underestimated result. 

 bulkc  is the concentration of R6G bulk solution, here bulkc =10-2 M, and AN  is the 

Avogadro constant. 
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Fig. S13. Raman intensity-depth profile of the intensity of 1093 cm-1 band for a glass 

slide substrate. 

 

   Provided that R6G molecules were in monolayer adsorption on the Cu@G-NGNs 

SERS substrate: 

2
SERS A

SERS

c vN A
N

r
  

2

/ bulk
bulk SERS

SERS

r hc
N N

vc


 =[3.14×(4.0×10-3)2×(15×10-6)×(1×10-2)]/[(5×10-9)×(1.0×10-5)]=

150.72 

Where SERSc  is the concentration of R6G solution for SERS, SERSc =10-5 M, v =5 μL, 

r  is the radius of 5 μL R6G solution formed on the SERS substrate, r =4.0 mm. 

Fig. S14 (a) and (b) are the normal Raman spectrum of 10-2 M of R6G solution 

and SERS spectrum of 10-5 M of R6G solution acquired from the Cu@G-NGNs 

substrate. The integrated intensities of the bands for bulkI  (612 cm-1) and SERSI  (610 

cm-1) were 1067 and 8122 cps, respectively. Considering the different number of 

molecules in each unit volume for normal Raman spectrum on glass substrate and 

SERS spectrum on the Cu@G-NGNs substrate, S7 /SERS bulkI I =8122×103/1067. 

Finally, the EF of the Cu@G-NGNs substrate was calculated as 1.15×106, which 

is an underestimated result. 
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Fig. S14. (a) Normal Raman spectrum of 10-2 M R6G solution. Laser power: 0.5 mW. 

(b) SERS spectrum of 10-5M R6G solution acquired from the Cu@G-NGNs substrate. 

Laser power: 0.5 mW. Baselines of both spectra were removed for the comparison. 
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