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Detailed Experimental :

Characterization. Using a Shimadzu Fourier transform infrared 8400S instrument, the IR spectra of samples
from KBr pellets were observed over the range of 400 — 4000 cm™. In addition, the 'H and *C NMR spectra
were taken on a Bruker DRX 300, and mass spectroscopy samples were analyzed on a JEOL JMS-700 mass
spectrometer. The elemental analysis was performed with a Perkin Elmer 2400 series II instrument.

Preparation of the Nanofiber Gels. A solution of 100 L of amines (2R, 2S, 3, 4D, 4L, 5D, 5L, 6D, 6L, 7R,
and 7S, 0-3.0 equiv.) in water was added into a vial containing 300 uL of a solution of gelator 1 (2.0 wt.% in
DMSO) during a typical gelation experiment. Heating of the mixtures was then carried out at 60—70 °C, and the
samples were sonicated in a bath sonicator for 3 minutes in order to obtain a homogenous solution. This solution
was then cooled to ambient temperature gradually to afford the nanofiber gel.

Preparation of Electrospun Film. Homogeneous solutions were employed for electrospinning and were
prepared by dissolving PMMA (Mw: 996,000 g mol™) with gelator 1 in DMSO for 3 hours under stirring
conditions at room temperature using a 2.0 wt.% concentration of gelator 1 and 4.0 wt.% of PMMA with respect
to gelator 1. Next, homogeneous gelator 1 and PMMA solutions were loaded into a 10 mL plastic syringe
housed with a metal needle (size 25 GA). The syringe was fixed horizontally within a syringe pump (KDS 200,
KD Scientific, USA), and after the electrode of a high voltage power supply (Nano NC, Korea) was connected
to the metal needle tip, the working distance between the needle tip and the ground electrode was set to 15 cm.
The solution flow rate was then set to 20 uL/min and at the same time the electrospinning voltage was set to 17
kV. In these experiments, the temperature and relative humidity were maintained at 25 °C and 50 %,
respectively.

Electrospun Film Inversion Experiments. After preparation of the electrospun films, they were submerged in
solutions containing 0.1M of 2R or 2S and allowed to incubated at 25 °C for 1 minute followed by recording of
the CD signal. The films were then placed in 0.1M HCI for 1 minute after which the CD signal arising from the
films was again recorded. This process was repeated five time for both the case of 2R and 2S exposure to show
the reversible nature of the helical transformation in the solid state films.

Microscopy Studies. The SEM images were taken with a field emission scanning electron microscope (FE-
SEM, Philips XL30 S FEG) using an acceleration voltage of 10—15 kV and an emission current of 10 #A.

Photophysical and Circular Dichroism Studies. A UV-vis spectrophotometer (Thermo Evolution 600) was
used to obtain the absorption spectra of the samples over the range of 200-800 nm. The spectra were acquired
for both the gel directly at room temperature and also dispersed in 3:1 DMSO/H,0. The UV-vis absorption
spectra of 1 (5.0 x10”° M) were observed in the presence of amines (2R, 2S, 3, 4D, 4L, 5D, 5L, 6D, 6L, 7R, and
7S, 0-3.0 equiv.). A quartz cell with 0.1 mm path length was loaded with samples for CD spectra analysis as
recorded on a Jasco J-815 CD spectrophotometer over the range of 240-700 nm. In these experiments, scans
were performed with a rate of 100 nm/min, with a sampling interval of 1.0 nm, and with a response time of 1s.
The scans were acquired for the gel directly at room temperature in DMSO/H,0O (3/1 v/v). We also obtained the
CD spectra of 1 (5.0 mM) in the presence of amines (2R, 2S, 3, 4D, 4L, 5D, 5L, 6D, 6L, 7R, and 7S, 0-3.0
equiv.).

NMR Studies. Stock solutions of cyclohexanediamine, gelator 1, as well as an internal standard DPM in
DMSO0-d¢/D,0 (3/1, v/v) were mixed in an NMR tube. Using a heat gun, the mixtures were heated unitl a clear
solution was formed that flowed freely, and at this point the sample was left to cool and equilibrate overnight
during which time gelation occurred. The 'H NMR spectra of the sample was then recorded at 5°C intervals, as
the temperature was increased from 25-80°C. The relevant peaks at each temperature were integrated to then
convert the data to concentrations by reference with the internal standard. The van’t Hoff plots were produced
using Equation 1 by a method that has been proposed in previous literature.' The gradient of the plots is equal to



—AH;, and the intercept equal to ASy,,. The calculated values of AH,, and ASy,, were used to predict the
concentration of solubilized gelator at each 5°C temperature interval.

In(Sol) = — Af:; + Af;fss (1)

Computational details for supporting information. We performed the density functional theory (DFT)

calculation to understand the origin of helical structure of nanofiber. Structures and energies of this work are

predicted by applying the M06-2X functional * with the LACVP basis set,” implemented in Jaguar 8.0 program
4

package.



o] cl
==
Cl -
(o]

o]
o -
}—QN._\ 1. SOCl >—@N . = © cl
e e " s '
HO N N H2 Meo N \ ,.-‘r N Hz
9

2. MeOH/Pyridine

THF/ TEA
8
OMe O; _OH

N

N
~ |

1. NaOH, HO/THF i

»
2. con-HCl O._.NH
=
o Hof[

=
(1]
3
o=<
/s
—
=
:
i\‘o
o
—
=
o

Scheme S1. Synthesis of gelator 1

Synthesis of Compound 8

8.35 g (0.05 mol) 4-Nitrobenzoic acid and 10.0 g (0.09 mol) p-phenylenediamine were suspended in 250 ml 3 %
aqueous NaOH and heat up to 120°C for 24 hours reaction time, the reaction was allowed to cool to room
temperature before filtration. Once cooled to ~ 5C, a red precipitate was collected (6.27 g, 52% ); '"H NMR
(DMSO-ds, 300MHz): 7.92 ( d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 6.67 (d, J =
8.7 Hz, 2H), 6.05 ( s, 2H, NH,); *C NMR (DMSO-dq 125MHz): 168.8, 152.6, 152.4, 142.9, 141.5, 129.7, 124.9,
120.5, 113.3; ESI-MS: m/z 240.2 [M-H]’; Anal. Calcd for C;3H;N;0,: C 64.72 %, H 4.60 %, N 17.42 %, O
13.26 %; Found: C 64.68 %, H 4.59 %, N 17.45 %, O 13.28 %.

Synthesis of Compound 9

A stirred suspension of 8 (1g, 4.15 mmol) in SOCI, (7.2 ml) was refluxed for 3h. The volatile components were
removed in vacuo. Methanol (2 ml) and pyridine (6 ml) were then added and the mixture was refluxed for 3 h. It
was then allowed to cool to room temperature. Water (40 ml) was added and the precipitate was isolated by
centrifugation. The solid was dried on a clay plate. The product crystallized from the concentrated extract
(0.64g , 60.7 %); '"H NMR (DMSO-dg, 300MHz): 8.08 (d, J = 8.7 Hz, 2H), 7.82 (d, J = 8.4Hz, 2H), 7.71 (d, J =
8.7Hz, 2H), 6.68 (d, J = 8.7Hz, 2H), 6.34 (s, 2H, NH,), 3.88 (s, 3H, CH;). *C NMR (DMSO-d¢ 125MHz):
165.7, 155.3, 153.7, 142.9, 130.3, 129.3, 125.8, 121.7, 121.7, 113.4, 52.1; ESI-MS m/z 256.0 [M+H]"; Anal.
Calcd for C14H 3N30,: C 65.87 %, H 5.13 %, N 16.48 %, O 12.53 %; Found: C 65.91 %, H 5.10 %, N 16.49 %,
0 12.49 %.

Synthesis of Compound 10

A solution of 9 (0.53 g, 2.08 mmol) and triethylamine (2.9 ml, 20.72 mol) in THF was allowed to cool in an



acetone/ice bath for 15 minutes before adding 1,3,5-benzenetricarbonyl trichloride (0.183 g, 0.69 mmol). The
resulting mixture was stirred at room temperature for 24h and filtered. The filtrate was concentrated in vacuo
and MeOH was added to the residue. The precipitates were collected and re-crystallization was carried out from
THF/MeOH (0.45 g, 71 %); '"H NMR (DMSO-dg, 300MHz): 11.03 (s, 3H ), 8.82 (s, 3H), 8.18-8.12 (m, 12H),
8.05-7.97 (m, 12H), 3.90 (s, 9H); °C NMR (DMSO-ds 125MHz): 165.5, 165.7, 155.5, 148.9, 143.6, 136.1,
132.1, 131.4, 124.9, 123.4, 121.5, 116.2, 53.3; ESI-MS: m/z 920.4 [M-H]; Anal. Caled for Cs;H3oNogOy: C
66.44 %, H 4.26 %, N 13.67 %, O 15.62 %, Found: C 66.50 %, H 4.19 %, N 13.62 %, O 15.68 %.

Synthesis of Compound 1 (gelator 1)

A mixture of 10 (0.50 g, 0.543 mmol) and NaOH (0.22 g, 5.50 mol) in THF and H,O was stirred for 24h at room
temperature. The solution was then concentrated in vacuo, and acidified with con-HCI solution. The precipitate
was filtered and dried in vacuo (0.42 g, 88 %)."H NMR (DMSO-dg, 300MHz): 13.27 (br, 3H ), 11.08 (s, 3H ),
8.84 (s, 3H), 8.18-8.14 (m, 12H), 8.05-7.95 (m, 12H); "C NMR (DMSO-d,s 125MHz): 167.2, 165.3, 155.0,
148.6, 143.2, 135.6, 133.0, 131.1, 131.0, 124.4, 122.9, 121.1; ESI-MS: m/z 878.5 [M-H]; Anal. Calcd for
C4sH33NgOg: C 65.53 %, H 3.78 %, N 14.33 %, O 16.37 %; Found: C 65.46 %, H 3.75 %, N 14.19 %, O
16.41 %.



Table S1 Gelation Properties of Gelator 1

Solvent Gelator 1 Solvent Gelator 1
DMSO/water (3/1 v/v) G EtOAc I
Water I Acetonitrile [
DMSO S CHCl4 I
DMF S CH,Cl, I
THF I Toluene I
MeOH | n-Hexane [

2 G=gelation, [=insoluble, S=solution.

Table S2 Thermodynamic Parameters Associated with the Gel-Sol Transition from Van’t Hoff Analysis of
Variable Temperature NMR Data.

Sample AHyiss / kJ mol™! ASqiss /' J mol 'K

1 15.65 3.65

1+2R 27.03 47.47
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Fig. S1 Photograph of gelation test in different solvents (2 wt% gelator 1).
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Fig. S2 Schematic illustration of possible gelation process of gelator 1 with A) small amount of 2R and B) large
amount of 2R; We suspect this characteristic of our system results from increased amount of analyte providing a

means for fiber aggregation as a growing proportion of analyte present on the surface of the fibers may facilitate
inter-fiber interactions.
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Fig. S3 SEM images of nanofibers prepared from of gelator 1 containing (a) 2 equiv. of 2R , and (b) 2 equiv. of
2S.

Fig. S4 SEM image of nanofibers prepared from gelator 1 after addition of 2.0 equiv. of 3.
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Fig. S5 UV/Vis spectra of gelator 1 (5.0x10™ M) without (a) 2R and with (b) 1.0 equiv., (c) 1.5 equiv., (d) 2.0
equiv., and (e) 2.5 equiv. of 2R in DMSO/water.
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0 equiv. L5 equiv. 2.0 equiv. 1.5 equiv.

Fig. S6 Photograph of gelation test of gelator 1 (2 wt%) without and with 2R (1.0 equiv.- 4.0 equiv.).
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Fig. S7 CD spectra of gelator 1 nanofibers having (a) 2.0 equiv., (b) 2.5 equiv., (¢) 3.0 equiv., and (d) 4.0 equiv.
of 2R (red lines) or 2S (blue lines) in DMSO/water.
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Fig. S8 CD spectra of gelator 1 (5.0 mM) nanofibers having 1.0 equiv., 2.0 equiv. and 3.0 equiv. of (A) 4D and
(B) 4L in DMSO/water. (C) CD spectra of gelator 1 (5.0 mM) nanofibers having 3.0 equiv. of 5D and 5L in
DMSO/water. (D) CD spectra of gelator 1 (5.0 mM) nanofibers having 3.0 equiv. of 6D and 6L in DMSO/water.
(E) CD spectra of gelator 1 (5.0 mM) nanofibers having 3.0 equiv. of 7R and 7S in DMSO/water.
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Fig. S9 CD spectra of gelator 1 (5.0 mM) nanofibers with different composition of cyclohexanediamine (2.0
equiv.) at a molar ratio of (a) 1:1 (2R : 2S), (b) 2:1 (2R : 2S), and (¢) 1:2 (2R : 2S).

Fig. S10 SEM images of (a) left- and (b) right-handed helical nanofibers formed in the presence of
cyclohexanediamine (2 equiv.) as a racemic mixture having a 1:1 molar ratio of 2R : 2S.
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Fig. S11 CD spectrum of gelator 1 (5.0 mM ) nanofibers with cis-1,2-cyclohexanediamine 3 (2.0 equiv.) in
DMSO/water.
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Fig. S12 CD spectra of gelator 1 (5.0 mM) nanofibers with (a) 2R (2.0 equiv.), (b) after washing with HCI for
nanofibers previously exposed to 2R; and after re-exposure of xerogel 1 to either (c) 2R or (d) 2S in

DMSO/water.



Fig. S13 SEM images of (a) xerogel 1 with 2R after washing with HCI solution; and after re-exposure of
xerogel 1 to either (b) 2R or (c) 2S in DMSO/water.
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Fig. S14 IR spectra of nanofibers gel before and after mixture with 2S (2.0 equiv.).
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Fig. S15 Variable temperature (VT) '"H NMR experiment demonstrating the immobilization of nanofibers gel
with 2R (20 mM) as temperature decreases; squares represent data of gelator 1 (10 mM).
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Fig. S16 Variable temperature (VT) '"H NMR spectra of nanofiber gel with 2R (2.0 equiv.) as temperature
decreases.
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Fig. S17 Van ‘t Hoff plots of nanofibers gel formed form nanofiber gel and also nanofiber gel with 2R (2 equiv.)
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Fig. S18 Optimized structures from density functional theory (DFT) calculations. (A) DFT optimized structure
of the benzoic acid (modeling the terminal part of gelator 1) associated with the 1S, 2S-cyclohexanediamine
(2S). The binding energy is 0.99 eV. (B) DFT optimized structure of the benzoic acid. Development of COO'-
NH;" interaction elongates OH bond of the carboxylic acid groups by 0.1 A (~10%). The magenta dotted line

represents hydrogen bonding.
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Fig. S19 Central phenyl rings in non-helical (left) and helical (right) structures from density functional theory
(DFT) calculation.
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Fig. S20 Powder X-ray diffraction analysis of gelator 1 nanofibers with and without exposure to 2 equiv. of 2R.
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Fig. S21 SEM images of film produced by electrospinning process of gelator 1 (2.0 wt%) with PMMA (4.0
wt%).
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Fig. S22 (a) "H NMR spectrum of 8 (300 MHz, DMSO-d,). (b) ?C NMR spectrum of 8 (125 MHz, DMSO-d).



8.098
8.069
7836
7.808
2

/ —

=

7692
6697

S 6.668
— §342

3878

C
—
-

L vy b
h e ek bt
28 28 2
] | I
100 50 0.0
ppm (t1)
by & &% § §3EE 3 .
8 88 g g 888 2 g
0,
1
9
1
1
|
1
[} I I
| | |
150 100 50
pm (t1)

Fig. S23 (a) '"H NMR spectrum of 9 (300 MHz, DMSO-dy). (b) *C NMR spectrum of 9 (125 MHz, DMSO-dg).
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