Supporting Information

Tuning Nonlinear Optical Absorption Properties of WS₂ Nanosheets

Hui Long[#], Lili Tao[#], Chun Yin Tang, Bo Zhou, Yuda Zhao, Longhui Zeng, Siu Fung Yu, Shu Ping Lau, Yang Chai, and Yuen Hong Tsang*

Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

[#] These authors contributed equally to this work

* Address correspondence to : Yuen.Tsang@polyu.edu.hk

Fig. S1. Experimental procedures for fabricating WS_2 quantum dots and nanosheets with different size and thickness distribution.

Fig. S2. Digital photographs of prepared WS₂/PMMA and WS₂QD/PMMA composites. They are S500, S1000, S5000, S7000 and WS₂QDs from the left to right, respectively

Fig. S3. Size distribution of WS_2 sheets exfoliated in NMP and subsequently separated under different centrifugation rates of a-500, b-1000, c-5000, and d-7000 rpm, respectively.

Fig. S4. Thickness distribution of WS_2 sheets exfoliated in NMP and subsequently separated under different centrifugation rates of a-500, b-1000, c-5000, and d-7000 rpm, respectively. The interlayer space of WS_2 is 0.62 nm.

Fig. S5. Randomly selected section height profiles of WS_2 sheets exfoliated in NMP and subsequently separated under different centrifugation rates of a-500, b-1000, c-5000, and d-7000 rpm, respectively. The interlayer space of WS_2 is 0.62 nm.

Fig. S6. Experimental setup of Z-scan technique.

Fig. S7. a) TEM image of the WS_2QDs assembled on Cu grid coated with ultrathin amorphous carbon film; b) HRTEM image of a typical single WS_2QD , and corresponding selected area FFT image c).

Materials	532 nm				1064 nm	
	T _L (%)	F _{ON} (J/cm ²)	F _{OL} (J/cm ²)	T _L (%)	F _{ON} (J/cm ²)	F _{OL} (J/cm ²)
Pd NW ¹	80	0.09	0.90	80	0.30	8.00
CdS NPs ²	70	0.30	2.55	70	1.00	16.40
Au NP ³	70	0.07	0.60	77	0.60	7.50
MWCNTs ²	70	0.04	0.68	70	0.13	9.69
CNTs-PTh-CdS ²	70	0.03	0.47	70	0.09	6.66
GO ⁴	70	0.19	1.19	75	1.36	10.32
GO NRs ⁵	70	0.10	1.00	70	0.20	4.00
PNP+GO-6	63	0.21	1.55	74	2.00	8.10
PEG-OPE-rGO ⁴	70	0.07	0.31	75	0.54	3.50
Graphene NSs ⁵	70	0.10	0.50	70	0.20	6.30
Graphene NRs ⁵	70	0.10	0.70	70	0.20	3.40
Graphene ⁷	73	0.01	0.08	85	0.01	0.1
MoS ₂ /PMMA ⁸	44	0.01	0.40	53	0.04	1.30
S7000*	44	0.011	0.245	65	0.036	0.48
WS ₂ QD/PMMA*	48	0.010	0.062	63	0.030	0.10

Table S1. The nonlinear optical property onset thresholds (F_{ON}) and optical limiting thresholds (F_{OL}) of different materials for the nanosecond laser operating at 532 and 1064 nm, respectively.

*This work

SamplesS500S1000S5000S7000 α (L g⁻¹ cm⁻¹) @ 532 nm13.9821.8427.9232.21 α (L g⁻¹ cm⁻¹) @1064 nm8.2610.7810.8510.95

Table S2. The absorption coefficient α (L g⁻¹ cm⁻¹) of different samples at 532 and 1064 nm, respectively.

References:

- 1 H. Pan, W. Chen, Y. P. Feng, W. Ji, J. Lin, Appl. Phys. Lett., 2006, 88, 223106.
- 2 M. Feng, R. Sun, H. Zhan, Y. Chen, *Carbon*, 2010, 48, 1177.
- 3 L. Polavarapu, N. Venkatram, W. Ji, Q. H. Xu, ACS Appl. Mater. Inter., 2009, 1, 2298.
- 4 T. He, X. Qi, R. Chen, J. Wei, H. Zhang, H. Sun, ChemPlusChem, 2012, 77, 688.
- 5 M. Feng, H. Zhan, Y. Chen, Appl. Phys. Lett., 2010, 96, 033107.
- 6 J. Balapanuru, J. X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. H. Xu, K. P. Loh, *Angew. Chem. Int. Ed.*, 2010, **122**, 6699.
- 7 G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, L. Chua, *Nat. Photonics*, 2011, 5, 554.
- 8 L. Tao, H. Long, B. Zhou, S. F. Yu, S. P. Lau, Y. Chai, K. H. Fung, Y. H. Tsang, J. Yao, D. Xu. *Nanoscale*, 2014, **6**, 9713.