Supporting Information

Hybrid Nanostructure of MnCo₂O_{4.5} Nanoneedle/Carbon Aerogel for Symmetric Supercapacitors with High Energy Density

Pin Hao^{ab}, Zhenhuan Zhao^a, Liyi Li^b, Chia-Chi Tuan^b, Haidong Li^a, Yuanhua Sang^a, Huaidong Jiang^a, C. P. Wong^{b*}, Hong Liu^{a*}

^a State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

^bSchool of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30032

Fig.S1 TGA curves of all samples in air atmosphere from room temperature to 700 °C.

Fig. S2 SEM images of (a, b) carbon aerogel and (c, d) the precursor of MnCo₂O_{4.5} nanoneedles.

Fig. S3 SEM images of the cross section of GMC2 before and after ultrasonic irradiation: (a, b) before ultrasonic irradiation, (c) after ultrasonic irradiation.

Fig.S4 EDS spectrum of GMC2.

Fig.S5 CV curves of pure $MnCo_2O_{4.5}$ nanoneedles at various scan rates in 2 M KOH aqueous electrolyte in the three-electrode set-up.

Fig.S6 CV curves of the hybrid structure at various scan rates in 1 M Na_2SO_4 aqueous electrolyte in the threeelectrode set-up.

Fig.S7 The CV curve of GMC2 at the scan rate of 100 mV s⁻¹ in 2 M KOH in the potential range of 0-1.5 V.

Fig.S8 (a) CV curves of GMC2 at various scan rates in 1 M H_2SO_4 aqueous electrolyte, (b) specific capacitance of GMC2 as a function of scan rate derived from (a), (c) charge/discharge curves of GMC2 at various current densities, (d) specific capacitance of GMC2 as a function of current density derived from (c).