Electronic Supplemental Information

Ming Li,^{a,b} Jun Dai^b and Xiao Cheng Zeng*^b

^a College of Chemical engineering, North China University of Science and Technology, Tangshan, Hebei, 063000, China.

^{b.}Department of Chemistry and Department Mechanics and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. E-mail: xzeng1@unl.edu

Figure S1. Computed phonon density of states (DOS) of unstrained TMTC monolayer: (a) HfS_3 , (b) $HfSe_3$. The linear response method, implemented in CASTEP 7.0, was adopted to compute the phonon DOS. More specifically, the PBE functional was chosen; and the energy cut off was set to 650 eV for HfS_3 and 400 eV for $HfSe_3$, for both structural optimization and phonon DOS computation. The density of Monkhorst-Pack q-vectors $3 \times 4 \times 1$ was selected. The vacuum space was greater than 15 Å.

Figure S2. Computed PDOS (optB86b-vdW functional) of unstrained TMTC monolayers: (a) ZrS_3 , (b) HfS₃, (c) TiS₃, and (d) NbS₃. The red lines denote the d_{z^2} and $d_{x^2-y^2}$ orbitals of M atom, the green lines denote the d_{xz} orbital of M atom. The blue lines denote the p_x and p_y orbitals of X atom, and the yellow lines denote the p_z orbital of X atom. The Vertical dashed line denotes the Fermi level.

Figure S3. Computed band structures of strained monolayer ZrSe_3 *versus* biaxial tensile strain (xy) in both x and y directions, the uniaxial tensile strain in x direction (xx) or y direction (yy). The red lines denote the d_z^2 orbital of the Zr atom. The green lines denote the $d_x^2 - y^2$ orbital of Zr atom. The cyan lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of Zr atom. The blue lines denote the p_x and p_y orbitals of Se atom, and the yellow lines denote the p_z orbital of Se atom. The dashed line indicates the Fermi level. I refers to either the VBM or CBM that is not located at the Γ point.

Figure S4. Band structures of unstrained monolayers: (a) HfS_3 , (b) $HfSe_3$, (c) $HfTe_3$. The red lines denote the d_z^2 orbital of Hf atom. The green lines denote the $d_x^2 - y^2$ orbitals of Hf atom. The cyan lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of Hf atom. The blue lines denote the p_x and p_y orbitals of (a) S, (b) Se, and (c) Te atom, and the yellow lines denote the p_z obital of (a) S, (b) Se, and (c) Te atom.

Figure S5. Computed band structures of strained monolayer HfS_3 *versus* biaxial tensile strain in both x and y directions (xy), the uniaxial tensile strain in x direction (xx) or y direction (yy). The red and green lines illustrate the d_z^2 orbital and the $d_x^2 - y^2$ orbital of Hf atom, respectively. The cyan lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of Hf atom. The blue lines denote the p_x and p_y orbitals of S atom, and the yellow lines denote the p_z obital of S atom. The dashed lines indicate the Fermi level.

Figure S6. Computed band structures of stained monolayer $HfSe_3$ *versus* biaxial tensile strain (xy) in both x and y directions, the uniaxial tensile strain in x direction (xx) or y direction (yy). The red lines denote the d_z^2 orbital of Hf atom. The green lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of Hf atom. The blue lines denote the p_x and p_y orbitals of Se atom, and the yellow lines denote the p_z obital of Se atom. The dashed lines indicate the Fermi level.

Figure S7. Computed band structures of strained monolayer HfTe₃ *versus* biaxial tensile strain in both x and y directions (xy), the uniaxial tensile strain in x direction (xx) or y direction (yy). The red and green lines illustrate the d_z^2 orbital and the $d_x^2 - y^2$ orbital of Hf atom, respectively. The cyan lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of Hf atom. The blue lines denote the p_x and p_y orbitals of Te atom, and the yellow lines denote the p_z obital of Te atom. The dashed lines indicate the Fermi level.

Figure S8. Band structures of unstrained monolayers: (a) TiS₃ and (b) NbSe₃. The red lines denote the d_z^2 orbital of (a) Ti atom and (b) Nb atom. The green lines denote the $d_x^2 - y^2$ orbitals of (a) Ti atom and (b) Nb atom. The cyan lines denote the d_{xy} , d_{yz} and d_{xz} orbitals of (a) Ti atom and (b) Nb atom. The cyan lines denote the p_x and p_y orbitals of S atom, and the yellow lines denote the p_z obital of the S atom. The dashed lines indicate the Fermi level.