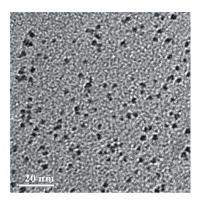
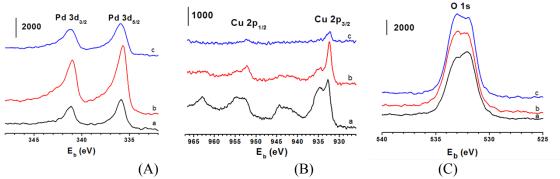
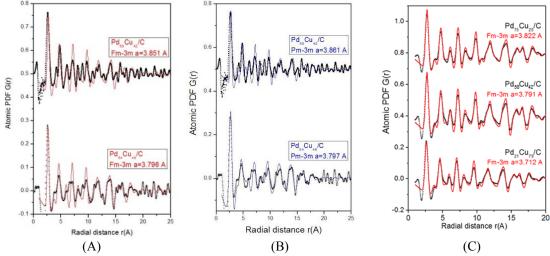
## **Supporting information**

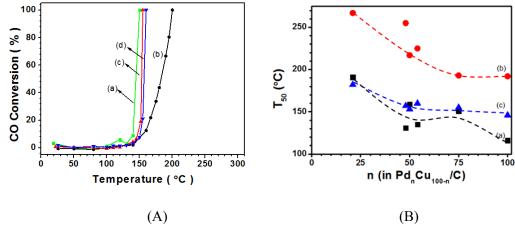
## Catalytic Activity of Bimetallic Catalysts Highly Sensitive to Atomic Composition and Phase Structure at the Nanoscale

Shiyao Shan,<sup>a</sup> Valeri Petkov,<sup>b,\*</sup> Binay Prasai,<sup>b</sup> Jinfang Wu,<sup>a</sup> Pharrah Joseph,<sup>a</sup> Zakiya Skeete<sup>a</sup>, Eunjoo Kim,<sup>a</sup> Derrick Mott,<sup>c</sup> Oana Malis,<sup>d</sup> Jin Luo,<sup>a</sup> and Chuan-Jian Zhong,<sup>a,\*</sup>

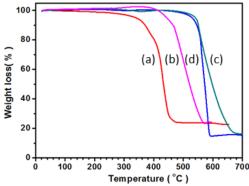
- a) Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
- b) Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
- c) School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292 Ishikawa, Japan.
- d) Department of Physics, Purdue University, West Lafayette, IN, USA
- (\* To whom correspondence should be addressed. Emails: cjzhong@binghamton.edu, and petko1vg@cmich.edu))

## **Additional Experimental Data:**

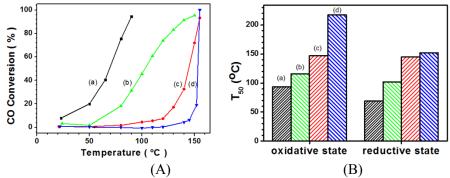






Figure S1. A representative TEM image for a sample of as-synthesized (E-) Pd<sub>58</sub>Cu<sub>42</sub> nanoparticles.

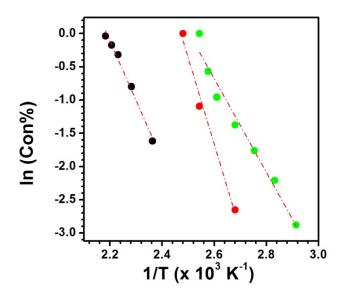



**Figure S2.** XPS spectra of carbon-supported (B-) Pd<sub>21</sub>Cu<sub>79</sub>/C (black, a), Pd<sub>48</sub>Cu<sub>52</sub>/C (red, b) and Pd<sub>75</sub>Cu<sub>25</sub>/C (blue, c) in regions of Pd 3d(A), Cu 2p(B) and O 1s (D)

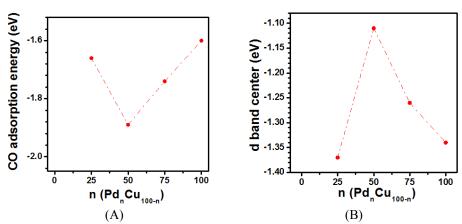



**Figure S3.** Experimental (black symbols) and fcc model (A, line in red) and bcc model (B, line in blue) atomic PDFs for both (E-)  $Pd_{58}Cu_{42}/C$  (top) and (B-)  $Pd_{54}Cu_{46}/C$  (bottom) under  $H_2$  at 200 °C. Model PDFs were fitted with both a chemically disordered alloy with a fcc-type (Fm-3m) structure and a chemically ordered alloy with a bcc-type (Pm-3m) structure. Refined fcc lattice parameters and bcc lattice parameters are shown by each data set. (C) Experimental (symbols) and model (line in red) atomic PDFs for fresh  $Pd_{25}Cu_{75}/C$ ,  $Pd_{58}Cu_{42}/C$  and  $Pd_{77}Cu_{23}/C$  alloy NPs which were treated under  $O_2$  at 260 °C followed by  $H_2$  at 400 °C. Model PDFs feature a chemically disordered alloy with a fcc-type (Fm-3m) structure. Refined fcc lattice parameters are shown by each data set.




**Figure S4.** (A) CO oxidation activities for Pd (green, a), Pd<sub>21</sub>Cu<sub>79</sub> (black, b), Pd<sub>48</sub>Cu<sub>52</sub> (red, c), and Pd<sub>75</sub>Cu<sub>25</sub> (blue, d) catalysts in reduced (treated under H<sub>2</sub>) state and (B) T<sub>50</sub> values as a function of the bimetallic composition comparing (1) fresh catalysts (a, black); (2) catalysts oxidized under O<sub>2</sub> at 450 °C for 30min (b, red); and (3) catalysts reduced under H<sub>2</sub> at 300 °C for 30 min (c, blue).




**Figure S5.** TGA curves for Cu/C (a, red) ,  $Pd_{21}Cu_{79}/C$  (b, purple),  $Pd_{54}Cu_{46}/C$  (c, dard green), and  $Pd_{75}Cu_{25}/C$  (d, blue) catalysts under 30%  $O_2$  at the flow rate of 130 ml/min.



**Figure S6.** (A) CO oxidation activities for reduced  $Pd_{48}Cu_{52}$  alloy NPs on different support:  $TiO_2$  (a, black);  $CeO_2$  (b, green),  $SiO_2$  (c, red), and carbon (d, blue) and (B)  $T_{50}$  values for  $Pd_{48}Cu_{52}$  catalysts over different supports (i.e.  $TiO_2$  (a, black),  $CeO_2$  (b, green),  $SiO_2$  (c, red), and Carbon (d, blue)) initially treated at 260 °C under  $N_2$  and then under reductive under 15 vol. %  $H_2$  at 400 °C followed by further treatment either under  $O_2$  at 450 °C for 30 min, denoted on the plot as oxidative state, or under  $H_2$  at 300 °C for 30 min, denoted on the plot as reductive state.



**Figure S7.** Arrhenius plots for CO oxidation over (E-)  $Pd_{25}Cu_{75}/C$  (a, black),  $Pd_{58}Cu_{42}/C$  (b, green), and  $Pd_{77}Cu_{23}/C$  (d, red) catalysts treated under  $O_2$  at 260 °C for 30 min followed by under  $H_2$  at 200 °C for 30 min.



**Figure S8.** Plot of calculated adsorption energies (red) (A) and d-band center (B) as a function of binary composition for CO adsorption on models of 4- atom PdCu clusters.

Table S1. XPS peak binding energies (in eV) and relative elemental ratios for PdCu NPs of different

compositions (Data pertain to (B-) PdCu NPs).

| Catalyst                           | Condition                               | Pd 3d        | Cu 2p          | C1s                         | O1s    | Elemental ratio |
|------------------------------------|-----------------------------------------|--------------|----------------|-----------------------------|--------|-----------------|
|                                    |                                         |              |                |                             |        |                 |
| Pd <sub>21</sub> Cu <sub>79</sub>  | $O_2 - H_2(400  ^{\circ}\text{C})$      | 341.1, 335.9 | 932.71, 943.0, | 284.76 (2p <sub>3/2</sub> ) | 533.1, | 21:79           |
|                                    |                                         |              | 953.9, 962.9   |                             | 532.1  |                 |
| Pd48Cu52                           | O <sub>2</sub> -H <sub>2</sub> (400 °C) | 341.0, 335.7 | 932.44, 952.3  | $284.8 (2p_{3/2})$          | 532.9, | 60:40           |
|                                    | - 2 2( )                                | ,            | , , , , , ,    | ( F 3/2)                    | 532.2  |                 |
| Pd75Cu25                           | O <sub>2</sub> -H <sub>2</sub> (400 °C) | 341.2, 335.9 | 932.2, 952.5   | 284.76 (2p <sub>3/2</sub> ) | 533.0, | 81:19           |
| r u <sub>75</sub> Cu <sub>25</sub> | $O_2 - \Pi_2(400 \text{ C})$            | 341.2, 333.9 | 932.2, 932.3   | 264.70 (2p <sub>3/2</sub> ) | ,      | 01.19           |
|                                    |                                         |              |                |                             | 531.9  |                 |

Note: The C 1s peak (284.75 eV) was used as an internal standard for the peak calibration.

**Table S2** Fcc type lattice parameter a data and first neighbor distance data for (B-) Pd<sub>21</sub>Cu<sub>79</sub>/C

| Temperature  | Fcc type, a (A) | First PDF peak (A) |  |  |
|--------------|-----------------|--------------------|--|--|
| Room         | 3.675           | 2.58               |  |  |
| 200C         | 3.698           | 2.57               |  |  |
| 400C-1min    | 3.698           | 2.57               |  |  |
| 400C-10min   | 3.698           | 2.57               |  |  |
| 400C-20min   | 3.697           | 2.57               |  |  |
| 400C-30min   | 3.697           | 2.60               |  |  |
| Back to room | N/A             | 2.87               |  |  |

Table S3. Comparison of kinetic data of the different PdCu nanoalloy catalysts

| Catalysts   | d <sub>NPs</sub> (nm) | ECA             | Thermal       | Reaction               | Ave. D       | TOF                                 | Ea       |
|-------------|-----------------------|-----------------|---------------|------------------------|--------------|-------------------------------------|----------|
| •           |                       | $(m^2/mg_{Pt})$ | treatment     | rate(×10 <sup>-6</sup> | (Dispersion, | $(\times 10^{-2} \text{ s}^{-1})^d$ | (kJ mol- |
|             |                       | a               |               | $mol/(g_{pd}.s)^b$     | %)c          |                                     | 1)f      |
|             |                       |                 |               | $(T_{\sim 100\%})$     |              |                                     |          |
| Pd          | ~7.0                  | 25              | $H_2$         | 2.27*10-5(150)         | 15           | 1.52                                | 41.4     |
| B-Pd21Cu79D | $7.4 \pm 1.2$         | -               | $N_2$ - $H_2$ | 6.37*10-5(200)         | 11           | 5.90                                | -        |
| B-Pd48Cu52D | $6.0\pm0.8$           | -               | $N_2$ - $H_2$ | 4.85*10-5(155)         | 18           | 2.78                                | -        |
| B-Pd75Cu25D | $4.9 \pm 0.5$         | -               | $N_2$ - $H_2$ | 3.63*10-5(160)         | 14           | 2.66                                | -        |
| B-Pd21Cu79M | $7.4 \pm 1.2$         | 8.3             | $N_2$ - $H_2$ | 7.10*10-6(140)         | 11           | 0.66                                | 112.6    |

| B-Pd54Cu46M | $6.0\pm0.8$   | 37  | $N_2$ - $H_2$ | 1.41*10-5(100) | 18 | 0.81  | 46.2 |
|-------------|---------------|-----|---------------|----------------|----|-------|------|
| B-Pd75Cu25M | $4.9 \pm 0.5$ | 21  | $N_2$ - $H_2$ | 8.08*10-6(120) | 14 | 0.59  | 58.5 |
| E-Pd25Cu75M | 2.7±0.5       | 23  | $N_2$ - $H_2$ | 8.63*10-6(140) | 21 | 0.44  | 53.2 |
| E-Pd58Cu42M | $2.6\pm0.6$   | 81  | $N_2$ - $H_2$ | 1.12*10-5(100) | 43 | 0.28  | 39.6 |
| E-Pd77Cu23M | $3.5 \pm 0.7$ | 100 | $N_2$ - $H_2$ | 3.30*10-7(120) | 32 | 0.011 | 89.7 |

Note: D is shortened for deep oxidation, where data collected at 300 °C  $H_2$  reduction; while M is shortened for mild oxidation where date collected at 200 °C  $H_2$  reduction. <sup>a</sup> Electrichemically active surface area (ECA) was determined by cycle votammetry. <sup>b</sup>Calculation of reaction rate was based on moles of CO reacted at the flow rate and was normalized against the total mass of Pd in the catalyst. <sup>c</sup>The dispersion of Pd on the surface of one NP was calculated using D =( $6V_m/(a_m d)$ )×100%, where  $V_m$  is the volume of atom Pd,  $a_m$  is Pd surface area, and d is the particle size. <sup>d</sup> Calculation of TOF was based on the surface Pd using TOF=Reaction rate/(MW(Pd)×D). Note that the metal loading (20%) is significantly higher than usual (0.1~8%), leading to a higher percentage of buried nanoparticle surface in this work. <sup>d</sup> Data derived from Arrhenius plots (See Figure S8).

**Table S4**. Calculated adsorption energy, E<sub>ads</sub> (eV), and d-band center of molecularly adsorbed CO on Pd<sub>4</sub>, Pd<sub>3</sub>Cu<sub>1</sub>, Pd<sub>2</sub>Cu<sub>2</sub>, Pd<sub>1</sub>Cu<sub>3</sub> systems. (Pd: blue dots, Cu: orange dots, C: grey dots and O: red dots)

| Pd <sub>3</sub> Cu <sub>1</sub> , Pd <sub>2</sub> Cu <sub>2</sub> , Pd <sub>1</sub> Cu <sub>3</sub> systems. (Pd. blue dots, Cu. blange dots, C. grey dots and O. led dots) |                   |                                 |                            |                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|----------------------------|--------------------------|--|--|--|
|                                                                                                                                                                             | Pd4-CO            | Pd3Cu1-CO                       | Pd2Cu2-CO                  | Pd1Cu3-CO                |  |  |  |
| Model                                                                                                                                                                       | 908<br>d<br>2.760 | .162<br>1.902<br>1<br>1.732,691 | .164<br>.898<br>.1<br>.621 | 7,900<br>1<br>2,536<br>u |  |  |  |
| $E_{\rm ads}({ m eV})$                                                                                                                                                      | -1.60             | -1.74                           | -1.89                      | -1.66                    |  |  |  |
| O-C bond/ Å                                                                                                                                                                 | 1.161             | 1.162                           | 1.164                      | 1.162                    |  |  |  |
| C-Pd bond/ Å                                                                                                                                                                | 1.908             | 1.902                           | 1.898                      | 1.900                    |  |  |  |
| d-band center /eV                                                                                                                                                           | -1.34             | -1.26                           | -1.11                      | -1.37                    |  |  |  |