Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

Min Zhou,^{a,b} Jun Zhao,^a Mei Tian,^b Shaoli Song,^c Rui Zhang,^a Sanjay Gupta,^d Dongfeng Tan,^e Haifa Shen^f, Mauro Ferrari^f, and Chun Li^{*a}

^aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 USA. Email: cli@mdanderson.org

^bThe Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.

^cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

^dDepartment of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

^eDepartment of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

[†]Department of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030

*Corresponding Author: Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054-1907 Phone: 713-792-5182; Fax: 713-794-5456; E-mail: cli@mdanderson.org

Thermal gravimetric analysis (TGA). PEG-CuS NPs were purified and centrifugal filtration at 6000 RPM for 15 min (MWCO 100K). After lyophilization, 5.161 milligram of sample was transferred to an aluminum pan and analyzed on a thermogravimetric analyzer. Figure S1 shows the TGA of PEG-CuS NPs. Weight loss occurred between 25°C and 600°C.

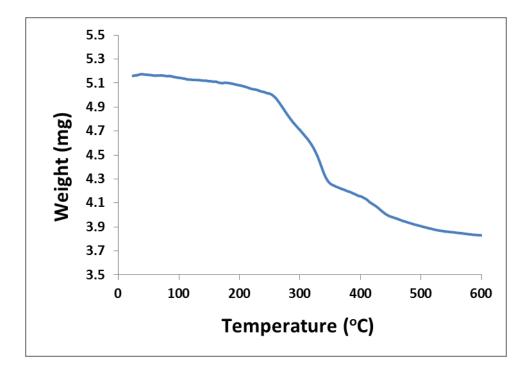
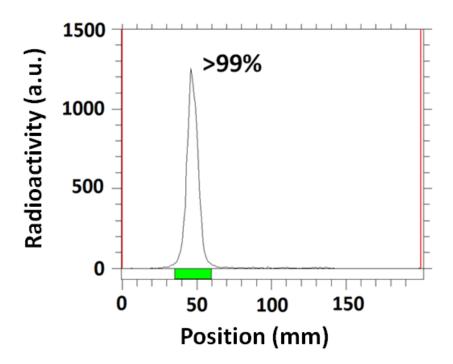



Figure \$1. TGA of PEG-CuS NPs.

Radiolabeling efficiency. The radiolabeling efficiency and stability of the labeled NPs were analyzed using instant thin-layer chromatography. The chromatography strips were developed with phosphate-buffered saline 7.4) containing (pH mΜ ethylenediaminetetraacetic acid and quantified using an IAR-2000 TLC imaging scanner (Bioscan, Washington, DC). To study the labeling stability, [64Cu]CuS NPs were suspended in phosphate-buffered saline or mouse serum and incubated at 37 °C for 24 h. Free 64Cu²⁺ ions moved to the solvent front, and the NPs remained at the original spot. The radioactivity at the original spot was recorded as a percentage of the total radioactivity of the chromatography strip.

Figure S2. Radio-labeling efficiency of [64Cu]CuS NPs. More than 99% of the radioactivity was associated with [64Cu]CuS NPs at the end of synthesis. Incorporation of 64Cu into CuS NPs was almost quantitative.