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1 Interaction potentials

The net external potential generated by the solid (substrate and pillars) and external

perturbative force fτ has the form

Unet(x, h) = U1s(x, h) + U2s(x, h) + Ue(x) (S. 1)

where Uis(x, h) (i = 1, 2) are the potentials due to the test fluid-solid, lubricating fluid-

solid interactions, respectively, and Ue(x) = fτx is the potential due to external pertur-

bative force. The zero of the latter potential is selected as the origin.

Due to the ordered geometrical location of the pillars and uniformity of the substrate,

the potential is periodic in the x-direction with period Lx (see Fig. 2 in the main text).

It can be obtained by integrating the corresponding Lennard-Jones potential (eq 1 in the

main text) over the entire volume of the solid and can be written as

Uis(r) =
∫

Vs

ρs(r
′)φis(|r − r′|)dr′ +

∫

Vp

ρs(r
′)φis(|r− r′|)dr′ (S. 2)

where Vs is the volume occupied by the substrate, Vp is the volume occupied by the pillars,

ρs(r
′) is the density of the solid. For a uniform solid, ρs(r

′) ≡ ρs, and the first integral in

eq S. 2 can be calculated analytically

∫

Vs

ρs(r
′)φis(|r− r′|)dr′ =

2π

3
ǫisρsσ

3
isΨ(σis, hp + h) . (S. 3)
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Figure 1: *(fig-potential2d-supplement) Example of the net potential generated by the solid (substrate

and pillars). The values of the potential provided on the plot legend are in units of kBT , where kB is the

Boltzman constant.

where Ψ(σ, H) = 2
15

(

σ
σ+H

)9
−

(

σ
σ+H

)3
.

In the second integral in eq S. 2, the integration with respect to y could be performed

analytically. Integration with respect of x- and h-coordinate was carried out numerically.

An example of calculated net potential is shown in Figure 1 for the choice of interaction

parameters provided in Sec. 2.1.3 of the main text and fτ = 7.8 × 10−16N.

2 Euler-Lagrange equations and their solution

The total Helmholtz free energy Ftot[ρ1(r), ρ2(r)] can be expressed as the sum of an ideal

gas free energy, Fid[ρ1(r), ρ2(r)], an excess free energy Fex[ρ1(r), ρ2(r)], and a free energy

F1s[ρ1(r)] + F2s[ρ2(r)] due to the interactions between fluid and walls. The ideal gas free

energy has the form

Fid[ρ1(r), ρ2(r)] = kBT
∑

i=1,2

∫

drρi(r){log[Λ3
i ρi(r)] − 1} (S. 4)
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where Λi = hP /(2πmikBT )1/2 is the thermal de Broglie wavelength of the molecules

of component i, kB and hP are the Boltzmann and Planck constants, respectively, T

is the absolute temperature, and mi is the molecular mass of component i. The ex-

cess free energy is composed of a contribution from a reference system of hard spheres

Φ[ρ1(r), ρ2(r)] and a contribution Fattr [ρ1(r), ρ2(r)] due to the attractive interactions be-

tween the fluid molecules. The former contribution, expressed in Rosenfeld’s approxima-

tion (Y.Rosenfeld, Phys.Rev.Lett., 1989, 63, 980.) has the form

Φ[ρ1(r), ρ2(r)]/kBT = −n0 log(1 − n3) +
n1n2 − n1n2

(1 − n3)
+

n2
2(n2 − 3n1n2)

24π(1 − n3)2
(S. 5)

where nα (α = 0, 1, 2, 3) and nα (α = 1, 2) are averaged densities given by

nα(r) =
2

∑

i=1

∫

dr′ρi(r
′)ω

(α)
i (r − r′), α = 0, 1, 2, 3, (S. 6)

nα(r) =
2

∑

i=1

∫

dr′ρi(r
′)ω̄

(α)
i (r − r′), α = 1, 2. (S. 7)

The scalar, ω
(α)
i (r− r′), and vector, ω̄

(α)
i (r− r′), weight functions are provided by R.Roth

and S.Dietrich, Phys.Rev.E, 2000, 62, 6926.

The contribution to the excess free energy due to the attraction between the fluid

molecules, calculated in the mean-field approximation, is given by

Fattr[ρ1(r), ρ2(r)] =
1

2

2
∑

i,j=1

∫ ∫

drdr′ρi(r)ρj(r
′)φij(|r − r′|) (S. 8)

(with φij(|r − r′|) = 0 for |r − r′| ≤ σij).
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The contribution of the fluid-solid interactions is given by

Fis[ρi(r)] =
∫

drρi(r)φis(r) . (S. 9)

The Euler-Lagrange equations for the FDDs ρi(x, h) (i = 1, 2) obtained by minimizing

the Helmholtz free energy

Ftot[ρ1(r), ρ2(r)] = Fid[ρ1(r), ρ2(r)] + Φ[ρ1(r), ρ2(r)] + Fattr[ρ1(r), ρ2(r)] +
2

∑

i=1

Fis[ρi(r)]

(S. 10)

has the following form

log[Λ3
i ρi(r)] − Qi(r) = λi/kBT, (i = 1, 2) (S. 11)

where

kBTQi(r) = −
3

∑

α=0

∫

dr′
∂Φ

∂nα(r′)
ω

(α)
i (r − r′)

−
2

∑

α=1

∫

dr′
∂Φ

∂nα(r′)
ω̄

(α)
i (r − r′) (S. 12)

−
∫

dr′[ρi(r
′)φii(|r− r′|) + ρj(r

′)φij(|r− r′|)] − Uis(r), (j 6= i)

and λi is a Lagrange multiplier arising because of the constraint of fixed average density

of component i in the slit

ρi,av =
1

Vi

∫

Vi

drρi(r) (S. 13)
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where Vi is the volume of the slit accessible to component i. Using eqs S. 11 and S. 13

the Lagrange multipliers can be rewritten in the form

λi = −kBT log

[

1

ρi,avViΛ3
i

∫

Vi

dreQi(r)

]

. (S. 14)

By eliminating λi between eqs S. 11 and S. 14 and perfoming the integration in eq S. 12

with respect to the y-direction, one obtains two integral equations for the FDDs ρ1(x, h)

and ρ2(x, h) which can be solved by numerical iterations.

The general iteration procedure used in this paper is explained in G.O.Berim and

E.Ruckenstein Nanoscale, 2015, 7, 7873. Here we will discuss only the selection of the

initial guess which constitutes an important part of the calculations. When the initial

guess is selected arbitrarily, usually as a “rectangular” drop at an arbitrary location on

the surface, the iterations transform its location and shape toward the location and shape

of the stable drop. The required number of iterations depends on how close is the initial

guess to the location of the solution of the Euler-Lagrange equation and how quick is

the transformation of the intermediate density distribution during iterations. For two-

component mixture, the iteration procedure is extremely slow. Hence, the choice of the

initial guess has a critical importance in finding the solution in a reasonable time. For

the selection of an initial FDD a special approach was developed which is based on the

following observation.

Let us suppose that the iterations start with a rectangular initial guess located ar-

bitrarily on the surface of LF (see Figure 2a) and that one keeps track of the difference

∆ρ
(k)
i (x, h) = ρ

(k+1)
i (x, h) − ρ

(k)
i (x, h) between the density distributions ρ

(k)
i (x, h) and
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Figure 2: (a) Initial guess for the iteration procedure. (b), (c), and (d) Possible graphs of the differences

between two consecutive iterations. Dark areas correspond to negative values of this differences and light

areas correspond to positive values.

ρ
(k+1)
i (x, h) for component i (i = 1, 2) provided by two consecutive iterations k and k +1.

Then, after 50 - 100 iterations this difference as function of x and h has, generally, one of

the three shapes presented in Figure 2b, c, and d where the light (dark) areas represent

positive (negative) values of ∆ρ
(k)
i (x, h). Figures 2b and c indicate the tendency of the

density distribution ρ
(k)
i (x, h) to “move” in the direction of the positive part of ∆ρ

(k)
i (x, h),

i.e. to the left for Figure 2b and to the right for Figure 2c. Figure 2d indicates the case in

which the initial guess is selected almost at the location of the solution of Euler-Lagrange

equation.

On the basis of the above observation, we first selected four initial guesses of the same

rectangular shape evenly distributed between the middle of the pillars and the the point

midway between pillars.

After several iterations (about 100), the differences ∆ρ
(k)
i (x, h) for each initial guess

were analyzed. The solution is located between the points where the distributions of
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∆ρ
(k)
i (x, h) “move” towards each other. To determine the location of the solution more

precisely, the described procedure was applied to the interval between those specific points

found in the previous part of the calculations.

To avoid the divergence of the iteration procedure, the input density profile ρ
(k),in
i (x, h)

for the (k + 1)-th iteration ρ
(k+1)
i (x, h), generated by the Euler-Lagrange equation, was

selected as follows

ρ
(k),in
i (x, h) = (1 − γ)ρ

(k−1),in
i (x, h) + γρ

(k)
i (x, h) (S. 15)

where the constant γ = 0.1. As a measure of the precision of the iterations the dimen-

sionless quantity

δ =

∣

∣

∣

∣

∣

∣

λ
(k+1)
i − λ

(k)
i

λ
(k)
i

∣

∣

∣

∣

∣

∣

was employed where λ
(k)
i is the Lagrange multiplier calculated from eq S. 14 using FDD

ρ
(k)
i (x, h). The iterations were carried out on a two dimensional grid with a spacing equal

to 0.1σ until δ became smaller than 10−7.
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