Electronic Supplementary Information (ESI)

Visual discrimination of dihydroxybenzene isomer based on nitrogendoped graphene quantum dots-silver nanoparticles hybrid

Bingfang Shi,^{ab} Yubin Su,^a Jingjin Zhao,*^a Rongjun Liu,^a Yan zhao^a and Shulin Zhao*^a

^aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources(Ministry of Education of China), College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, China.

^bDepartment of Chemistry and Life Sciences, Baise University, Guangxi Baise 533000, China *Corresponding author:zhaoshulin001@163.com

Fig. S1 a) Effect of the doge of N-GQDs on relative absorbance of N-GQDs/AgNPs hybrid; b) Effect of the concentration of NaOH on relative absorbance of N-GQDs/AgNPs hybrid; c) Effect of the reaction time on relative absorbance of N-GQDs/AgNPs hybrid. The concentrations of N-GQDs were 0.406 mg mL⁻¹.

Fig. S2 Energy-dispersive spectrum (EDS) of the N-GQDs/AgNPs.

Fig. S3c has been amended as:

Fig. S3d has been amended as:

Fig. S3 XPS spectra of N-GQDs (a) and N-GQDs/AgNPs (b); O1s XPS spectra of N-GQDs (c) and N-GQDs/AgNPs (d).

Fig. S4 UV-vis absorption spectra of sample solutions under different conditions. The concentrations of Ag⁺, CC, RC, and HQ were 45.0 μ M, 10.0 μ M, 10.0 μ M and 10.0 μ M, respectively.

Fig. S5 UV–vis absorption spectra of sample solutions and standard 1,4-benzoquinone solutions. The concentrations of Ag⁺, HQ and 1,4-benzoquinone were 45.0 μ M, 10.0 μ M, 10.0 μ M, 30.0 μ M and 50.0 μ M, respectively.

Fig. S6 UV-vis absorption spectra of sample solutions under different conditions. The concentrations of Ag⁺, CC, RC, and HQ were 45.0 μ M, 10.0 μ M, 10.0 μ M and 10.0 μ M, respectively.

Fig. S7 UV-vis absorption spectra of sample solutions under different conditions. The concentrations of Ag⁺, CC, RC, and HQ were 45.0 μ M, 10.0 μ M, 10.0 μ M and 10.0 μ M,, respectively.

Fig. S8 a) Effect of the doge of Ag⁺ on catalytic ability of N-GQDs/AgNPs hybrid; b) Effect of the concentration of pH on catalytic ability of N-GQDs/AgNPs hybrid; c) Effect of the reaction time on catalytic ability of N-GQDs/AgNPs hybrid. The concentrations of N-GQDs were 0.406 mg mL⁻¹.

	Detection range		Limit of detection		
Туре	(µM)		(nM)		Ref.
	CC	HQ	CC	HQ	
Electrospun carbon nanofibers modified electrode	1-200	1–200	200	400	1
Poly-amidosulfonic acid and multi- wall carbon nanotubes modified glassy carbon electrode	6–180	6–100	100	100	2
Sodium tripolyphosphate capped Mn-doped ZnS quantum dots	0.5-5	_	53	_	3
Fluorescent N-doped carbon dots	2.66-344	_	300	_	4
High-performance liquid					
chromatogramphy on hypercross-	1.65-454	1.24-363	908	495	5
linked polystyrene					
Determination of hydroquinone by	_	0.64–18.	_	191	6
UV-vis spectrophotometry		2		171	Ũ
Colorimetric sensing based on N- GQDs/AgNPs hybrid-Ag ⁺ system	0.1-15	0.3-20	30	100	this study

Table S1 Comparison of analytical methods for the detection of CC and HQ

Notes and references

- 1 Q. H. Guo, J. S. Huang, P. Q. Chen, Y. Liu, H. Q. Hou and T. Y. You, Sens. Actuat. B, 2012, 163, 179.
- 2 D. M. Zhao, X. H. Zhang, L. J. Feng and S. F. Wang, Colloid Surf. B, 2009, 74, 317.
- 3 H. F. Wang, Y. Y. Wu and X. P. Yan, Anal. Chem., 2013, 85, 1920.
- 4 H. Li, W. Q. Kong, J. Liu, N. Y. Liu, H. Huang, Y. Liu and Z. H. Kang. Carbon, 2015, 91, 66.
- 5 A. N. Penner and P. N. Nesterenko, Analyst, 2000, 125, 1249.
- 6 M. I. Bhanger, A. Niaz, A. Shah and A.Rauf. Talanta, 2007, 72, 546.