Electronic Supplementary Information

One-pot synthesis of active copper-containing carbon dots with laccase-like activities

Xiangling Ren, Jing Liu, Jun Ren, Fangqiong Tang* and Xianwei Meng*

Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.

*Corresponding author. Tel: 86-10-82543521; Fax: 86-10-62554670 E-mail: mengxw@mail.ipc.ac.cn

Figure S1. (A) Fluorescence emission spectra of Cu-CDs and CDs with different temperature. (B) Fluorescence emission spectra of Cu-CDs with different amount of copper ions. (C) Fluorescence emission spectra of Cu-CDs with different reaction time. (D) Fluorescence emission spectra of Cu-CDs kept in room temperature for 6

months.

Figure S2. Time-dependent absorbance changes at 495 nm of 10mM PPD in laccase (0.3U) solution, Cu-CDs (100 μ L) solution and Cu-CDs (100 μ L) solution storage in room temperature for 6 months.

Figure S3. Photographs of the Cu-CDs solutions in the presence of varying

concentrations of HQ.

Figure S4. Time-dependent fluorescence changes of Cu-CDs in the presence of 20

mM HQ.

Figure S5. (A) Fluorescence changes of CDs in the presence of different concentrations of HQ in phosphate buffer (pH=7.0). (B) Relative fluorescence intensity of CDs versus the concentration of HQ in phosphate buffer (pH=7.0).

Figure S6. Fluorescence changes of Cu-CDs in water, phosphate buffer (pH=7.0) and

carbonate buffer (pH=9.2).

Materials	Methods	Linear range	LOD	Reference
	HPLC	0.046 mM-1.85mM	2.59 μM	S. P. Wang
				et al. [1]
	MEKC ^a	0.046 mM-5.55mM	2.96 µM	
LDHf ^b	Electrochemistry	3.2 μM -2.4 mM	1 μΜ	M. G. Li et
				al. [2]
SiO ₂ /C/Nb ₂ O ₅	Electrochemistry	0.16 mM-1.3 mM	1.6 μM	Т. С.
				Canevari et
				al. [3]
TiO ₂ /MWCNTs ^c	Electrochemistry	2.5 μM -0.2 mM	0.8 µM	Z. C. Meng
		0.4 mM-2.0 mM		et al. [4]
Poly(3-	Electrochemistry	0.5 μM -0.04 mM	0.2 μM	M. Zhong
aminophenylbor				et al. [5]
onic				
acid)/MWCNTs ^c				
Cu-CDs	Fluorescence	0.05 mM-2 mM	1 μΜ	This paper
		1 mM-30 mM		

Table S1. The different methods for the determination of HQ.

^a Micellar electrokinetic chromatography;

^b Zn/Al layered double hydroxide film;

c Multi-wall carbon nanotubes;

[1] S. P. Wang and T. H. Huang, Anal. Chim. Acta., 2005, 534, 207-214.

[2] M. G. Li, F. Ni, Y. L. Wang, S. D. Xu, D. D. Zhang, S. H. Chen and L. Wang,

Electroanalysis, 2009, 21, 1521-1526.

[3] T. C. Canevari, L. T. Arenas, R. Landers, R. Custodio and Y. Gushikem, *Analyst*, 2013, **138**, 315-324.

- [4] Z. C. Meng, H. F. Zhang and J. B. Zheng, Res. Chem. Intermed., 2015, 41, 3135-3146.
- [5] M. Zhong, Y. L. Dai, L. M. Fan, X. J. Lu and X. W. Kan, *Analyst*, 2015, 140, 6047-6053.